A Structural-Stochastic Model for the Analysis and Synthesis of Cloud Images

Louis Garand Department of Meteorology, University of Wisconsin, Madison, WI 53706

Search for other papers by Louis Garand in
Current site
Google Scholar
PubMed
Close
and
James A. Weinman Department of Meteorology, University of Wisconsin, Madison, WI 53706

Search for other papers by James A. Weinman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A structural-stochastic image model is developed for the analysis and synthesis of cloud images. The ability of the model to characterize the visual appearance of cloud fields observed by satellite with a limited number of parameters is demonstrated. The model merges structural and stochastic information, the stochastic model acting as a local statistical operator applied to the output of the structural model. The structural or large-scale organization of the scene is retrieved from the two-dimensional Fourier representation of the digital image. The pattern generated by the major Fourier components provides a first guess of the scene. The stochastic aspect is described by a Markov model of texture that assumes a binomial probability distribution for the local grey-level variability. This Markov model provides four parameters that represent the clustering strength in the horizontal, vertical and diagonal directions. These parameters are estimated by a standard maximum-likelihood technique. The image can be reproduced with a fair degree of verisimilitude from these parameters. The data compression factor is of the order of one hundred to several hundreds.

Abstract

A structural-stochastic image model is developed for the analysis and synthesis of cloud images. The ability of the model to characterize the visual appearance of cloud fields observed by satellite with a limited number of parameters is demonstrated. The model merges structural and stochastic information, the stochastic model acting as a local statistical operator applied to the output of the structural model. The structural or large-scale organization of the scene is retrieved from the two-dimensional Fourier representation of the digital image. The pattern generated by the major Fourier components provides a first guess of the scene. The stochastic aspect is described by a Markov model of texture that assumes a binomial probability distribution for the local grey-level variability. This Markov model provides four parameters that represent the clustering strength in the horizontal, vertical and diagonal directions. These parameters are estimated by a standard maximum-likelihood technique. The image can be reproduced with a fair degree of verisimilitude from these parameters. The data compression factor is of the order of one hundred to several hundreds.

Save