Aspects of Regional-Scale Flows in Mountainous Terrain

James E. Bossert Department of Atmospheric Science, Colorado State University Fort Collins, Colorado

Search for other papers by James E. Bossert in
Current site
Google Scholar
PubMed
Close
,
John D. Sheaffer Department of Atmospheric Science, Colorado State University Fort Collins, Colorado

Search for other papers by John D. Sheaffer in
Current site
Google Scholar
PubMed
Close
, and
Elmar R. Reiter Department of Atmospheric Science, Colorado State University Fort Collins, Colorado

Search for other papers by Elmar R. Reiter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mountaintop data from remote stations in the central Rocky Mountains have been used to analyze terrain-induced regional (meso-β to meso-α) scale circulation patterns. The circulation consists of a diurnally oscillating wind regime, varying between daytime inflow toward, and nocturnal outflow from, the highest terrain. Both individual case days and longer term averages reveal these circulation characteristics. The persistence and broadscale organization of nocturnal outflow at mountaintop, well removed from valley drainage processes, demonstrates that this flow is part of a distinct regime within the hierarchy of terrain-induced wind systems.

The diurnal cycle of summertime convective storm development imparts a strong influence upon regional-scale circulation patterns. Subcloud cooling processes, associated with deep moist convection, alter the circulation by producing early and abrupt shifts in the regional winds from an inflow to outflow direction. These wind events occur frequently when moist conditions prevail over the central Rocky Mountains. Atmospheric soundings suggest that significant differences occur in the vertical profile of the topographically influenced layer, depending upon the dominant role of either latent or radiative forcing.

Abstract

Mountaintop data from remote stations in the central Rocky Mountains have been used to analyze terrain-induced regional (meso-β to meso-α) scale circulation patterns. The circulation consists of a diurnally oscillating wind regime, varying between daytime inflow toward, and nocturnal outflow from, the highest terrain. Both individual case days and longer term averages reveal these circulation characteristics. The persistence and broadscale organization of nocturnal outflow at mountaintop, well removed from valley drainage processes, demonstrates that this flow is part of a distinct regime within the hierarchy of terrain-induced wind systems.

The diurnal cycle of summertime convective storm development imparts a strong influence upon regional-scale circulation patterns. Subcloud cooling processes, associated with deep moist convection, alter the circulation by producing early and abrupt shifts in the regional winds from an inflow to outflow direction. These wind events occur frequently when moist conditions prevail over the central Rocky Mountains. Atmospheric soundings suggest that significant differences occur in the vertical profile of the topographically influenced layer, depending upon the dominant role of either latent or radiative forcing.

Save