An Acid Rain Study in the Washington, D.C. Area

View More View Less
  • a Atmospheric Sciences, Brookhaven National Laboratory, Upton, New York
  • | b Environmental Chemistry Division, Brookhaven National Laboratory, Upton, New York
  • | c U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, Research Triangle Park, North Carolina
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A field study in the Washington, D.C. area explored the impact of urban emissions and mesoscale meteorology on precipitation chemistry. The study was a follow-up to an earlier, considerably more industrialized, study in the Philadelphia area; emissions along the Delaware Valley were found to affect the deposition of nitrate and sulfate on the urban mesoscale. The Washington studies were designed to complement and enhance the earlier study with an expanded sampling domain, sequential precipitation sampling and airborne measurements. Four storms were sampled successfully between October 1986 and April 1987. Results appear to confirm the conclusions of the Philadelphia study, although the upwind-downwind contrast in nitrate and sulfate deposition is not as pronounced. This difference is attributed to the area's widely distributed emission patterns and to the prevailing theories regarding the production of nitric acid and sulfuric acid on the relevant time and space scales. The importance of mesoscale meteorology and hydrogen peroxide availability is highlighted in at least two of the sampled storms.

Abstract

A field study in the Washington, D.C. area explored the impact of urban emissions and mesoscale meteorology on precipitation chemistry. The study was a follow-up to an earlier, considerably more industrialized, study in the Philadelphia area; emissions along the Delaware Valley were found to affect the deposition of nitrate and sulfate on the urban mesoscale. The Washington studies were designed to complement and enhance the earlier study with an expanded sampling domain, sequential precipitation sampling and airborne measurements. Four storms were sampled successfully between October 1986 and April 1987. Results appear to confirm the conclusions of the Philadelphia study, although the upwind-downwind contrast in nitrate and sulfate deposition is not as pronounced. This difference is attributed to the area's widely distributed emission patterns and to the prevailing theories regarding the production of nitric acid and sulfuric acid on the relevant time and space scales. The importance of mesoscale meteorology and hydrogen peroxide availability is highlighted in at least two of the sampled storms.

Save