Microphysical and Radiative Characteristics of Convective Clouds during COHMEX

View More View Less
  • a General Sciences Corporation, Laurel, Maryland
  • | b Laboratory for Atmospheres, NASA, Goddard Space Flight Center Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The use of passive remote microwave radiance measurements above cloud tops for rainrate estimation is complicated by the complex nature of cloud microphysics. The knowledge of the microphysical structure of clouds, specifically the hydrometeor types, shapes, sizes, and their vertical distribution, is important because radiative emission and scattering effects are dependent upon the hydrometeor distribution. This paper has two purposes: first, to document the structure and evolution of two strong thunderstorms in Alabama using radar multiparameter data; and second, to relate the inferred microphysics to the resulting upwelling microwave radiance observed concurrently by high altitude aircraft. These measurements were collected during the COHMEX field program in the summer of 1986. The radar analysis includes a description of the parameters reflectivity Z, differential reflectivity ZDR, linear depolarization ratio LDR, and hail signal HS for two thunderstorm cases on 11 July 1986. The simultaneous aircraft data includes passive microwave brightness temperature (TB) measurements at four frequencies ranging from 18 to 183 GHz as well as visible and infrared data.

The remote radar observations reveal the existence of large ice particles within the storms which is likely to have caused the observed low microwave brightness temperatures. By relating the evolution of the radar measureables to the microwave TB's it has been found that knowledge of the storm microphysics and its evolution is important to adequately understand the microwave TB's.

Abstract

The use of passive remote microwave radiance measurements above cloud tops for rainrate estimation is complicated by the complex nature of cloud microphysics. The knowledge of the microphysical structure of clouds, specifically the hydrometeor types, shapes, sizes, and their vertical distribution, is important because radiative emission and scattering effects are dependent upon the hydrometeor distribution. This paper has two purposes: first, to document the structure and evolution of two strong thunderstorms in Alabama using radar multiparameter data; and second, to relate the inferred microphysics to the resulting upwelling microwave radiance observed concurrently by high altitude aircraft. These measurements were collected during the COHMEX field program in the summer of 1986. The radar analysis includes a description of the parameters reflectivity Z, differential reflectivity ZDR, linear depolarization ratio LDR, and hail signal HS for two thunderstorm cases on 11 July 1986. The simultaneous aircraft data includes passive microwave brightness temperature (TB) measurements at four frequencies ranging from 18 to 183 GHz as well as visible and infrared data.

The remote radar observations reveal the existence of large ice particles within the storms which is likely to have caused the observed low microwave brightness temperatures. By relating the evolution of the radar measureables to the microwave TB's it has been found that knowledge of the storm microphysics and its evolution is important to adequately understand the microwave TB's.

Save