An Application of an Explicit Microphysics Mesoscale Model to a Regional Icing Event

George D. Modica Atmospheric Sciences Division, Geophysics Directorate, Phillips Laboratory, Bedford, Massachusetts

Search for other papers by George D. Modica in
Current site
Google Scholar
PubMed
Close
,
Scot T. Heckman Atmospheric Sciences Division, Geophysics Directorate, Phillips Laboratory, Bedford, Massachusetts

Search for other papers by Scot T. Heckman in
Current site
Google Scholar
PubMed
Close
, and
Roy M. Rasmussen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A hydrostatic regional prediction model is modified to permit the existence of both liquid and ice hydrometeors within the same grid volume. The modified model includes an efficient ice-water saturation adjustment and a simple procedure to create or remove cloud water or ice. The objective was to determine whether such a model could provide deterministic forecasts of aircraft icing conditions in the 6–36-h period. The model was used to simulate an orographically forced icing event (the Valentine's Day storm of 12–14 February 1990) that occurred during the 1990 phase of the Winter Icing and Storms Project (WISP-90). Output from a 24-h nested-grid integration of the model was compared to observations taken during WISP-90. The model produced a thin (∼1-2 km deep) supercooled liquid water (SLW) cloud that was in good agreement with observations in terms of initiation, duration, liquid water content, and location. Results of the simulation also suggest that slantwise ascent can be an important component in the production of SLW.

Abstract

A hydrostatic regional prediction model is modified to permit the existence of both liquid and ice hydrometeors within the same grid volume. The modified model includes an efficient ice-water saturation adjustment and a simple procedure to create or remove cloud water or ice. The objective was to determine whether such a model could provide deterministic forecasts of aircraft icing conditions in the 6–36-h period. The model was used to simulate an orographically forced icing event (the Valentine's Day storm of 12–14 February 1990) that occurred during the 1990 phase of the Winter Icing and Storms Project (WISP-90). Output from a 24-h nested-grid integration of the model was compared to observations taken during WISP-90. The model produced a thin (∼1-2 km deep) supercooled liquid water (SLW) cloud that was in good agreement with observations in terms of initiation, duration, liquid water content, and location. Results of the simulation also suggest that slantwise ascent can be an important component in the production of SLW.

Save