All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2 2 2
PDF Downloads 2 2 2

Impact of Land-Surface Moisture Variability on Local Shallow Convective Cumulus and Precipitation in Large-Scale Models

View More View Less
  • 1 Department of Meteorology and Physical Oceanography, Rutgers University, New Brunswick, New Jersey
Restricted access

Abstract

Numerical experiments using a state-of-the-art high-resolution mesoscale cloud model showed that land-surface moisture significantly affects the timing of onset of clouds and the intensity and distribution of precipitation. In general, landscape discontinuity enhances shallow convective precipitation. Two mechanisms that are strongly modulated by land-surface moisture—namely, random turbulent thermal cells and organized sea-breeze-like mesoscale circulations—also determine the horizontal distribution of maximum precipitation. However, interactions between shallow cumulus and land-surface moisture are highly nonlinear and complicated by different factors, such as atmospheric thermodynamic structure and large-scale background wind. This analysis also showed that land-surface moisture discontinuities seem to play a more important role in a relatively dry atmosphere, and that the strongest precipitation is produced by a wavelength of land-surface forcing equivalent to the local Rossby radius of deformation. A general trend between the maximum precipitation and the normalized maximum latent heat flux was identified. In general, large values of mesoscale latent heat flux imply strongly developed mesoscale circulations and intense cloud activity, accompanied by large surface latent heat fluxes that transport more water vapor into the atmosphere.

Abstract

Numerical experiments using a state-of-the-art high-resolution mesoscale cloud model showed that land-surface moisture significantly affects the timing of onset of clouds and the intensity and distribution of precipitation. In general, landscape discontinuity enhances shallow convective precipitation. Two mechanisms that are strongly modulated by land-surface moisture—namely, random turbulent thermal cells and organized sea-breeze-like mesoscale circulations—also determine the horizontal distribution of maximum precipitation. However, interactions between shallow cumulus and land-surface moisture are highly nonlinear and complicated by different factors, such as atmospheric thermodynamic structure and large-scale background wind. This analysis also showed that land-surface moisture discontinuities seem to play a more important role in a relatively dry atmosphere, and that the strongest precipitation is produced by a wavelength of land-surface forcing equivalent to the local Rossby radius of deformation. A general trend between the maximum precipitation and the normalized maximum latent heat flux was identified. In general, large values of mesoscale latent heat flux imply strongly developed mesoscale circulations and intense cloud activity, accompanied by large surface latent heat fluxes that transport more water vapor into the atmosphere.

Save