All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 23 5
PDF Downloads 35 9 0

Mobile Microwave Radiometer Observations: Spatial Characteristics of Supercooled Cloud Water and Cloud Seeding Implications

Arlen W. HugginsAtmospheric Sciences Center, Desert Research Institute, Reno, Nevada

Search for other papers by Arlen W. Huggins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies of the spatial distribution of supercooled liquid water in winter storms over mountainous terrain were performed primarily with instrumented aircraft and to a lesser extent with scans from a stationary microwave radiometer. The present work describes a new technique of mobile radiometer operation that was successfully used during numerous winter storms that occurred over the Wasatch Plateau of central Utah to determine the integrated depth of cloud liquid water relative to horizontal position on the mountain barrier. The technique had the advantage of being able to measure total liquid from the terrain upward, without the usual terrain avoidance problems that research aircraft face in cloudy conditions. The radiometer also collected data during several storms in which a research aircraft could not be operated because of severe turbulence and icing conditions.

Repeated radiometer transects of specific regions of the plateau showed significant variability in liquid water depth over 30–60-min time periods, but also revealed that the profile of orographically generated cloud liquid was consistent, regardless of the absolute quantities. Radiometer liquid depth generally increased across the windward slope of the plateau to a peak near the western edge of the plateau top and then decreased across the relatively flat top of the plateau. These observations were consistent with regions where maximum and minimum vertical velocities were expected, and with depiction of cloud liquid by accretional ice particle growth across the mountain barrier. A comparison of data from the mobile radiometer and a stationary radiometer verified the general decrease in liquid depth from the windward slope to the top of the plateau and also showed that many liquid water regions were transient mesoscale features that moved across the plateau.

Implications of the results, relative to the seeding of orographic clouds, were that seeding aerosols released from valley-based generators could at times be inhibited by stable conditions from reaching appropriate super-cooled liquid water regions and, as found by others, the region of cloud most likely to be encountered by an AgI seeding agent released from the ground was also relatively warm compared to the ice-forming capability of the particular agent used in these experiments. Also, one convective case study that exhibited relatively warm temperatures in the cloud layer indicated that, even in conditions that permit vertical transport to supercooled liquid zones, sufficient time for ice particle growth and fallout from seeded plumes on this plateau may be lacking.

Abstract

Previous studies of the spatial distribution of supercooled liquid water in winter storms over mountainous terrain were performed primarily with instrumented aircraft and to a lesser extent with scans from a stationary microwave radiometer. The present work describes a new technique of mobile radiometer operation that was successfully used during numerous winter storms that occurred over the Wasatch Plateau of central Utah to determine the integrated depth of cloud liquid water relative to horizontal position on the mountain barrier. The technique had the advantage of being able to measure total liquid from the terrain upward, without the usual terrain avoidance problems that research aircraft face in cloudy conditions. The radiometer also collected data during several storms in which a research aircraft could not be operated because of severe turbulence and icing conditions.

Repeated radiometer transects of specific regions of the plateau showed significant variability in liquid water depth over 30–60-min time periods, but also revealed that the profile of orographically generated cloud liquid was consistent, regardless of the absolute quantities. Radiometer liquid depth generally increased across the windward slope of the plateau to a peak near the western edge of the plateau top and then decreased across the relatively flat top of the plateau. These observations were consistent with regions where maximum and minimum vertical velocities were expected, and with depiction of cloud liquid by accretional ice particle growth across the mountain barrier. A comparison of data from the mobile radiometer and a stationary radiometer verified the general decrease in liquid depth from the windward slope to the top of the plateau and also showed that many liquid water regions were transient mesoscale features that moved across the plateau.

Implications of the results, relative to the seeding of orographic clouds, were that seeding aerosols released from valley-based generators could at times be inhibited by stable conditions from reaching appropriate super-cooled liquid water regions and, as found by others, the region of cloud most likely to be encountered by an AgI seeding agent released from the ground was also relatively warm compared to the ice-forming capability of the particular agent used in these experiments. Also, one convective case study that exhibited relatively warm temperatures in the cloud layer indicated that, even in conditions that permit vertical transport to supercooled liquid zones, sufficient time for ice particle growth and fallout from seeded plumes on this plateau may be lacking.

Save