• Albrecht, B. A., C. S. Bretherton, D. W. Johnson, W. H. Shubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc.,76, 889–904.

  • Alishouse, J. C., S. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990a: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens.,28, 811–816.

  • ——, ——, E. R. Westwater, C. Swift, C. Ruf, S. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990b: Determination of cloud liquid water content using the SSM/I. IEEE Trans. Geosci. Remote Sens.,28, 817–822.

  • Bauer, A., M. Godon, J. Carlier, Q. Ma, and R. H. Tipping, 1993: Absorption by H2O and H2O-N2 mixture at 153GHz. J. Quant. Spectrosc. Radiat. Transfer,50, 463–475.

  • Bauer, P., and P. Schluessel, 1993: Rainfall, total water, ice water and water vapor above sea from polarized microwave simulations and Special Sensor Microwave/Imager data. J. Geophys. Res.,98, 20 737–20 759.

  • Bjerkaas, A. W., and F. W. Riedel, 1979: Proposed model for the elevation spectrum of a wind-roughened sea surface. Tech. Memo. JHU/APL TG 1328, 39 pp. [Available from Applied Physics Lab., Johns Hopkins University, Laurel, MD 20723.].

  • Cox, C., and W. Munk, 1954: Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer.,44, 838–850.

  • English, S., 1995: Airborne radiometric observations of cloud liquid water emission at 89 and 157GHz: Application to the retrieval of liquid water path. Quart. J. Roy. Meteor. Soc.,121, 1501–1524.

  • ——, C. Guillou, C. Prigent, and D. C. Jones, 1994: Aircraft measurements of water vapour continuum absorption at millimetre wavelength. Quart. J. Roy. Meteor. Soc.,120, 603–625.

  • Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances by nonlinear optimal estimation. I: Theory and simulation for TOVS. Quart. J. Roy. Meteor. Soc.,115, 1001–1026.

  • ——, G. A. Kelly, A. P. McNally, E. Anderson, and A. Persson, 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis. Quart. J. Roy. Meteor. Soc.,119, 1427–1463.

  • Filiberti, M. A., L. Eymard, and B. Urban, 1994: Assimilation of satellite precipitable water in a meteorological forecast model. Mon. Wea. Rev.,122, 486–506.

  • Francis, C. R., D. P. Thomas, and E. P. L. Windsor, 1983: The evaluation of SMRR retrieval algorithms. Satellite Microwave Remote Sensing, T. D. Allen, Ed., Ellis Horwood, 481–498.

  • Gagarin, S. Y., and B. G. Kutusa, 1983: Influence of sea roughness and atmospheric inhomogeneities on microwave radiation of the atmosphere–ocean system. IEEE J. Oceanic Eng.,8, 62–70.

  • Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res.,94, 4547–4555.

  • Greenwald, T. J., G. L. Stephens, T. H. Vonder Haar, and D. L. Jackson, 1993: A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res.,98, 18 471–18 488.

  • Guillou, C., C. Prigent, S. English, and D. Jones, 1993: Gazeous absorption and sea surface emissivity models: Validation from aircraft measurements at millimeter waves. Proc. IGARSS’93, Tokyo, Japan, 1619–1621.

  • ——, S. English, C. Prigent, and D. Jones, 1996: Passive microwave airborne measurements of the sea surface response at 89 and 157GHz. J. Geophys. Res.,101, 3775–3788.

  • Han, Y., J. Snider, and E. R. Westwater, 1994: Observations of water vapor by ground based microwave radiometers and Raman lidar. J. Geophys. Res.,99, 18 695–18 702.

  • Hollinger, J. P., 1991: DMSP Special Sensor Microwave/Imager. Vol. 2, Calibration/validation. Final Rep.

  • ——, R. Lo, G. Poe, R. Savage, and J. Pierce, 1987: Special Sensor Microwave/Imager user’s guide. Naval Research Laboratory, 120 pp.

  • Karstens, U., C. Simmer, and E. Ruprecht, 1994: Remote sensing of cloud liquid water. Meteor. Atmos. Phys.,54, 157–171.

  • Klein, L. A., and C. T. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag.,25, 104–111.

  • Kuo, Y. H., Y. R. Guo, and E. R. Westwater, 1993: Assimilation of precipitable water measurements into a mesoscale numerical model. Mon. Wea. Rev.,121, 1215–1238.

  • Liebe, H. J., 1989: MPM—An atmospheric millimeter-wave propagation model. Int. J. Infrared Millimeter Waves,10, 631–650.

  • ——, G. A. Hufford, and M. G. Cotton, 1993: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000GHz. AGARD Specialist Meeting of the Electromagnetic Wave Propagation Panel, Palma de Mallorca, Spain, 17–21.

  • Lin, B., and W. B. Rossow, 1994: Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods. J. Geophys. Res.,99, 20 907–20 927.

  • Liu, G., and J. A. Curry, 1993: Determination of characteristics features of cloud liquid water from satellite microwave measurements. J. Geophys. Res.,98, 5069–5092.

  • Ma, Q., and R. H. Tipping, 1990: Water vapor continuum in the millimeter spectral region. J. Chem. Phys.,93, 6127–6139.

  • Manabe, T., H. J. Liebe, and G. A. Hufford, 1987: Complex permittivity of water between 0 and 30 THz. 12th Int. Conf. on Infrared and Millimeter Waves, Orlando, FL, IEEE, 229–230.

  • NAG, 1991: NAG FORTRAN library manual, mark 15. [Available from NAG Ltd., Oxford, United Kingdom.].

  • Petty, G., 1990: On the response of the Special Sensor Microwave Imager to the marine environment—Implications for atmospheric parameters retrievals. Ph.D. dissertation, University of Washington, 291 pp. [Available from University of Washington, Seattle, WA 98195.].

  • ——, and K. B. Katsaros, 1990: New algorithms for the Special Sensor Microwave Imager. Proc. Fifth Int. Conf. on Satellite Meteorology and Oceanography, London, England, 247–251.

  • Phalippou, L., 1996: Variational retrieval of humidity profile, wind speed and cloud liquid water path with SSM/I: Potential for numerical weather prediction. Quart. J. Roy. Meteor. Soc.,122, 327–355.

  • Prigent, C., and P. Abba, 1990: Sea surface equivalent brightness temperature at millimeter wavelength. Ann. Geophys.,8, 627–634.

  • ——, A. Sand, C. Klapisz, and Y. Lemaitre, 1994: Physical retrieval of liquid water contents in a North Atlantic cyclone using SSM/I data. Quart. J. Roy. Meteor. Soc.,120, 1179–1207.

  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys.,14, 609–624.

  • Rosenkranz, P. W., 1992: Absorption of microwaves by atmospheric gases. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., Wiley-Interscience.

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc.,72, 2–20.

  • Schluessel, P., and W. J. Emery, 1990: Atmospheric water vapour over the oceans from SSM/I measurements. Int. J. Remote Sens.,11, 753–766.

  • ——, and H. Luthardt, 1991: Surface wind speed over the North Sea from Special Sensor Microwave/Imager observations. J. Geophys. Res.,96, 4845–4853.

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc.,116, 435–460.

  • Stoeffelen, A., and D. Anderson, 1994: The ECMWF contribution to the characterisation, interpretation, calibration and validation of ERS-1 scatterometer backscatter measurements and wind, and their use in numerical weather prediction models, Final Rep. ESA Contract 90997/90/NL/BI.

  • Walter, S. J., 1992: The tropospheric microwave water vapor spectrum: Uncertainties for remote sensing. Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, Boulder, CO, 203–210.

  • Weill, A., and Coauthors, 1995: SOFIA experiment during ASTEX. Global Atmosphere and Ocean System, Vol. 3, 355–395.

  • Weng, F., and N. Grody, 1995: Retrieval of liquid and ice water in atmosphere using Special Sensor Microwave Imager (SSM/I) data. J. Geophys. Res.,100, 25 535–25 551.

  • Wentz, F. J., 1975: A two-scale scattering modelfor foam-free sea microwave brightness temperatures. J. Geophys. Res.,80, 3441–3446.

  • ——, 1992: Measurements of oceanic wind vector using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens.,30, 960–972.

  • Westwater, E. R., J. B. Snider, and M. J. Falls, 1990: Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, 90.0 GHz: A comparison of measurements and theory. IEEE Trans. Antenna Propag.,38, 1569–1580.

  • Wilheit, T. T., 1979: The effect of wind on the microwave emission from the ocean’s surface at 37 GHz. J. Geophys. Res.,84, 4921–4926.

  • Wu, S. T., 1979: Oceanic whitecaps and sea state. J. Phys. Oceanogr.,9, 1064–1068.

  • ——, and A. K. Fung, 1972: A noncoherent model for microwave emissions and backscattering from the sea surface. J. Geophys. Res.,77, 5917–5929.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 33 24
PDF Downloads 28 4 1

Variational Inversion of the SSM/I Observations during the ASTEX Campaign

C. PrigentDépartement de Radioastronomie Millimétrique, CNRS, Observatoire de Paris, Paris, France

Search for other papers by C. Prigent in
Current site
Google Scholar
PubMed
Close
,
L. PhalippouEuropean Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by L. Phalippou in
Current site
Google Scholar
PubMed
Close
, and
S. EnglishSatellite Applications Section, Numerical Weather Prediction Division, U.K. Meteorological Office, Bracknell, United Kingdom

Search for other papers by S. English in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Given the prospect of direct assimilation of satellite microwave radiances within numerical weather prediction (NWP) schemes, this study proposes to test a nonlinear inversion for retrieving geophysical parameters from Special Sensor Microwave/Imager (SSM/I) measurements using NWP forecasts as a priori information. The inversion method relies upon an accurate analysis of the radiative transfer and simultaneously retrieves the surface wind speed, the integrated water vapor, and the cloud liquid water.

The method is tested in the framework of the well-documented Atlantic Stratocumulus Transition Experiment campaign. The validation approach involves radiosondes from islands, ships, and drifting buoys, cloud liquid water measurements from instruments onboard the U.K. Meteorological Office C-130 aircraft, and the International Satellite Cloud Climatology Project cloud liquid water estimates. The retrieved geophysical parameters are in satisfactory agreement with the available in situ measurements, and the inversion process is shown to be reliable even in the detection of low liquid water contents.

The SSM/I inversion scheme is also a strategy for the validation of radiative transfer models, the discrepancy between the simulated and the observed radiances at the end of the inversion process being a powerful tool for testing the radiative transfer in use.

Current affiliation: Columbia University, NASA/Goddard Institute for Space Studies, New York, New York.

Corresponding author address: Dr. C. Prigent, NASA/Goddard Institute for Space Studies, New York, NY 10025.

cprigent@giss.nasa.gov

Abstract

Given the prospect of direct assimilation of satellite microwave radiances within numerical weather prediction (NWP) schemes, this study proposes to test a nonlinear inversion for retrieving geophysical parameters from Special Sensor Microwave/Imager (SSM/I) measurements using NWP forecasts as a priori information. The inversion method relies upon an accurate analysis of the radiative transfer and simultaneously retrieves the surface wind speed, the integrated water vapor, and the cloud liquid water.

The method is tested in the framework of the well-documented Atlantic Stratocumulus Transition Experiment campaign. The validation approach involves radiosondes from islands, ships, and drifting buoys, cloud liquid water measurements from instruments onboard the U.K. Meteorological Office C-130 aircraft, and the International Satellite Cloud Climatology Project cloud liquid water estimates. The retrieved geophysical parameters are in satisfactory agreement with the available in situ measurements, and the inversion process is shown to be reliable even in the detection of low liquid water contents.

The SSM/I inversion scheme is also a strategy for the validation of radiative transfer models, the discrepancy between the simulated and the observed radiances at the end of the inversion process being a powerful tool for testing the radiative transfer in use.

Current affiliation: Columbia University, NASA/Goddard Institute for Space Studies, New York, New York.

Corresponding author address: Dr. C. Prigent, NASA/Goddard Institute for Space Studies, New York, NY 10025.

cprigent@giss.nasa.gov

Save