Estimating Convective Atmospheric Boundary Layer Depth from Microwave Radar Imagery of the Sea Surface

Todd D. Sikora Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Todd D. Sikora in
Current site
Google Scholar
PubMed
Close
,
George S. Young Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by George S. Young in
Current site
Google Scholar
PubMed
Close
,
Hampton N. Shirer Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Hampton N. Shirer in
Current site
Google Scholar
PubMed
Close
, and
Rick D. Chapman Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Search for other papers by Rick D. Chapman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Kilometer-scale mottling seen on real and synthetic aperture radar imagery of the sea surface can be linked to the presence of microscale cellular convection (thermals) spanning the marine atmospheric boundary layer. In the current study, it is hypothesized that the typical scale of the mottling, found via standard Fourier spectral analysis, can be used to estimate the depth of the convective marine atmospheric boundary layer (zi) using a modified form of traditional mixed-layer similarity theory for these thermals’ aspect ratio. The hypothesis linking the typical scale of mottling to zi is substantiated using previously published boundary layer results and supporting meteorological and oceanographic data from a number of case studies.

Corresponding author address: Dr. Todd D. Sikora, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD20723-6099.

Abstract

Kilometer-scale mottling seen on real and synthetic aperture radar imagery of the sea surface can be linked to the presence of microscale cellular convection (thermals) spanning the marine atmospheric boundary layer. In the current study, it is hypothesized that the typical scale of the mottling, found via standard Fourier spectral analysis, can be used to estimate the depth of the convective marine atmospheric boundary layer (zi) using a modified form of traditional mixed-layer similarity theory for these thermals’ aspect ratio. The hypothesis linking the typical scale of mottling to zi is substantiated using previously published boundary layer results and supporting meteorological and oceanographic data from a number of case studies.

Corresponding author address: Dr. Todd D. Sikora, Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD20723-6099.

Save
  • Agee, E. M., 1984: Observations from space and thermal convection: A historical perspective. Bull. Amer. Meteor. Soc.,65, 938–949.

  • ——, 1987: Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans,10, 317–341.

  • Alpers, W., and B. BrĂĽmmer, 1994: Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res.,99, 12 613–12 621.

  • Chapman, R. D., and C. W. Rowe, 1992: Joint U.S./Russia internal wave remote sensing experiment meteorological data summary. JHU/APL Tech. Rep. S1R-92U-049, 24 pp. [Available from The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723-6099.].

  • Deardorff, J. W., and G. E. Willis, 1967: Investigation of turbulent convection between horizontal plates. J. Fluid Mech.,28,675–704.

  • Efremov, G. A., P. A. Shirokov, V. S. Etkin, and A. V. Smirnov, 1992: Radar investigations of sea surface disturbances. Proc. Int. Geoscience and Remote Sensing Symp. 92, Houston, TX, IEEE, 710–712.

  • Gasparovic, R. F., R. D. Chapman, F. M. Monaldo, D. L. Porter, and R. E. Sterner, 1993: Joint U.S./Russia internal wave remote sensing experiment: Interim results. JHU/APL Tech. Rep. S1R-93U-011, 102 pp. [Available from The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723-6099.].

  • Gerling, T. W., 1986: Structure of the surface wind field from the Seasat SAR. J. Geophys. Res.,91, 2308–2320.

  • Hardy, K. R., and H. Ottersten, 1969: Radar investigations of convective patterns in the clear atmosphere. J. Atmos. Sci.,26, 666–672.

  • Huhnerfuss, H., A. Gericke, W. Alpers, R. Theis, V. Wismann, and P. A. Lange, 1994: Classification of sea slicks by multifrequency radar techniques: New chemical insights and their geophysical implications. J. Geophys. Res.,99, 9835–9845.

  • JOWIP and SARSEX Special Issue, 1988: Synthetic aperture radar—internal wave results. The Georgia Strait and New York Bight experiments. J. Geophys. Res.,93, 12 217–14 164.

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows, Their Structure and Measurement. Oxford University Press, 289 pp.

  • ——, J. C Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc.,98, 563–589.

  • ——, ——, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci.,33, 2152–2169.

  • Kalmykov, A. I., A. P. Pichugin, V. N. Tsymbac, and V. P. Shestopalov, 1984: Radiophysical observations from space of intermediate-scale formations on the surface of the ocean. Sov. Phys. Dokl.,29, 1016–1017.

  • Khalsa, S. J. S., and G. K. Greenhut, 1985: Conditional sampling of updrafts and downdrafts in the marine atmospheric boundary layer. J. Atmos. Sci.,42, 2550–2562.

  • Konrad, T. G., 1970: The dynamics of the convective process in clear air as seen by radar. J. Atmos. Sci.,27, 1138–1147.

  • Kuettner, J. P., 1971: Cloud bands in the Earth’s atmosphere. Tellus,23, 404–425.

  • LaViolette, P. E., S. Peteherych, and J. F. R. Gower, 1980: Oceanographic implications of features in NOAA satellite visible imagery. Bound-Layer Meteor.,18, 159–175.

  • Legeckis, R., E. Legg, and R. Limeburner, 1980: Comparison of polar and geostationary infrared observations of sea surface temperatures in the Gulf of Maine. Remote Sens. Environ.,9, 339–350.

  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci.,30, 1077–1091.

  • Lenschow, D. H., and P. L. Stephens, 1980: The role of thermals in the convective boundary layer. Bound.-Layer Meteor.,19, 509–532.

  • McClain, E. P., 1980: Passive radiometry of the ocean from space—an overview. Bound.-Layer Meteor.,18, 7–24.

  • Monaldo, F.M., 1993: Gain factor correction of the Russian RAR data. JHU/APL Tech. Memo. S1R-93U-006, 14 pp. [Available from The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20723-6099.].

  • Mourad, P. D., 1996: Inferring multiscale structure in atmospheric turbulence using satellite-based SAR imagery. J. Geophys. Res.,101, 18 433–18 449.

  • Nilsson, C. S., and P. C. Tildesley, 1995: Imaging of oceanic feature by ERS-1 synthetic aperture radar. J. Geophys. Res.,100, 953–967.

  • Rothermel, J., and E. M. Agee, 1986: A numerical study of atmospheric convective scaling. J. Atmos. Sci.,43, 1185–1197.

  • Rufenach, C. L., R. A. Shuchman, and N. P. Malinas, 1991: Ocean wave spectral distortion in airborne synthetic aperture radar imagery during the Norwegian Continental Shelf Experiment of 1988. J. Geophys. Res.,96, 10 453–10 466.

  • Schumann, U., and C.-H. Moeng, 1991: Plume fluxes in clear and cloudy convective boundary layers. J. Atmos. Sci.,48, 1746–1757.

  • Shenk, W. E., and V. V. Salomonson, 1972: A multispectral technique to determine sea surface temperature using Nimbus 2 data. J. Phys. Oceanogr.,2, 157–167.

  • Shirer, H. N., B. A. Lambert Jr., L. V. Zuccarello, R. Wells, and T. D. Sikora, 1996: Brightness variability on synthetic aperture radar imagery of the sea surface caused by kilometer-scale atmospheric convective eddies. Proc. Oceans 96, Fort Lauderdale, FL, MTS/IEEE, 1396–1399.

  • Sikora, T. D., and G. S. Young, 1994: Observations and applications of the horizontal perturbation wind field with convective structure of the marine atmospheric surface layer. Bound.-Layer Meteor.,68, 419–426.

  • ——, ——, R. C. Beal, and J. B. Edson, 1995: Use of spaceborne synthetic aperture radar imagery of the sea surface in detecting the presence and structure of the convective marine atmospheric boundary layer. Mon. Wea. Rev.,123, 3623–3632.

  • Smirnov, A. V., and V. U. Zavorotny, 1995: Study of polarization differences in Ku-band ocean radar imagery. J. Phys. Oceanogr.,25, 2215–2228.

  • Spence, T. W., and R. Legeckis, 1981: Satellite and hydrographic observations of low-frequency wave motions associated with cold core Gulf Stream rings. J. Geophys Res.,86, 1945–1953.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Thomson, R. E., P. W. Vachon, and G. A. Borstad, 1992: Airborne synthetic aperture radar imagery of atmospheric gravity waves. J. Geophys. Res.,97, 14 249–14 257.

  • Trokhimovsky, Y. G., V. Yakovlev, R. D. Chapman, and D. R. Thompson, 1994: The coherence of wind and radar data obtained during the joint U.S.–Russia Internal Wave Experiment. Proc. Int. Geoscience and Remote Sensing Symp. 94, Pasadena, CA, IEEE, 802–804.

  • Velichko, S. A., A. I. Kalmykov, Yu. A. Sinitsyn, V. N. Tsymbac, and V. P. Shestopalov, 1989: Radar studies of intermediate-scale interactions of the ocean and the atmosphere from aerospace carriers. Sov. Phys. Dokl.,34, 817–819.

  • Vesecky, J. F., and R. H. Stewart, 1982: The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment. J. Geophys. Res.,87,3397–3430.

  • Vukovich, F. M., and B. W. Crissman, 1980: Some aspects of Gulf Stream boundary eddies from satellite and in situ data. J. Phys. Oceanogr.,10, 1792–1813.

  • Watts, A., 1987: Wind and Sailing Boats, the Structure and Behavior of the Wind as it Affects Sailing Craft. David and Charles, 234 pp.

  • Weijers, E. P., A. van Delden, H. F. Vugts, and A. G. C. A. Meesters, 1995: The composite horizontal wind field within convective structures of the atmospheric surface layer. J. Atmos. Sci.,52, 3866–3878.

  • Wilczak, J. M., 1984: Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: Velocity and temperature structure. J. Atmos. Sci.,41, 3537–3550.

  • ——, and J. E. Tillman, 1980: The three-dimensional structure of convection in the atmospheric surface layer. J. Atmos. Sci.,37, 2424–2443.

  • Young, G. S., 1987: Mixed layer spectra from aircraft measurements. J. Atmos. Sci.,44, 1251–1256.

  • ——, 1988: Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment. J. Atmos. Sci.,45, 727–735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 772 504 31
PDF Downloads 105 33 3