A Comparison of the Normalized Difference Vegetation Index and Rainfall for the Amazon and Northeastern Brazil

Pablo Santos Department of Meteorology, The Florida State University, Tallahassee, Florida

Search for other papers by Pablo Santos in
Current site
Google Scholar
PubMed
Close
and
Andrew J. Negri NASA/GSFC Laboratory for Atmospheres, Greenbelt, Maryland

Search for other papers by Andrew J. Negri in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a comparison of the normalized difference vegetation index (NDVI) and rainfall for the Amazon and northeastern Brazil for the time period of 1988–90. The analysis shows that the NDVI and rainfall are uncorrelated in the Amazon, except in the northernmost part, where the rainfall regime is drier and a savanna type of vegetation is present. In the drier region of northeastern Brazil, the relationship is exponential, with the NDVI showing sensitivity to rainfall within a regime of less than approximately 100 mm per month of rainfall.

* Current affiliation: NOAA/NWS, Jacksonville, Florida.

Corresponding author address: Andrew J. Negri, Laboratory for Atmospheres, NASA/GSFC, Code 912, Greenbelt, MD 20771.

Abstract

This paper presents a comparison of the normalized difference vegetation index (NDVI) and rainfall for the Amazon and northeastern Brazil for the time period of 1988–90. The analysis shows that the NDVI and rainfall are uncorrelated in the Amazon, except in the northernmost part, where the rainfall regime is drier and a savanna type of vegetation is present. In the drier region of northeastern Brazil, the relationship is exponential, with the NDVI showing sensitivity to rainfall within a regime of less than approximately 100 mm per month of rainfall.

* Current affiliation: NOAA/NWS, Jacksonville, Florida.

Corresponding author address: Andrew J. Negri, Laboratory for Atmospheres, NASA/GSFC, Code 912, Greenbelt, MD 20771.

Save
  • Diallo, O., A. Diouf, N. P. Hanan, A. Ndiaye, and Y. Prevost, 1991: AVHRR monitoring of savanna primary production in Senegal, West Africa: 1987–1990. Int. J. Remote Sens.,12, 1259–1279.

  • Goward, S. N., D. G. Dye, S. Turner, and J. Yang, 1993: Objective assessment of the NOAA global vegetation index data product. Int. J. Remote Sens.,14, 3365–3394.

  • Gutman, G. G., 1990: Review of the workshop on the use of satellite-derived vegetation indices in weather and climate prediction model. Bull. Amer. Meteor. Soc.,71, 1458–1463.

  • ——, 1991: Vegetation indices from AVHRR: An update and future prospects. Remote Sens. Env.,35, 121–136.

  • ——, 1994: Global data on land surface parameters from NOAA AVHRR for use in numerical climate models. J. Climate,7, 669–680.

  • ——, D. T. Tarpley, A. Ignatov, and S. Olson, 1995: The enhanced NOAA global land dataset from the Advanced Very High Resolution Radiometer. Bull. Amer. Meteor. Soc.,76, 1141–1156.

  • Hielkema, J., U. S. D. Prince, and W. L. Astle, 1986b: Rainfall and vegetation monitoring in the savanna zone of the Democratic Republic of Sudan using the NOAA Advanced Very High Resolution Radiometer. Int. J. Remote Sens.,7, 1499–1513.

  • Holben, B. N., 1986: Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens.,7, 1395–1416.

  • ——, T. F. Eck, and R. S. Fraser, 1991: Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing. Int. J. Remote Sens.,12, 1147–1164.

  • James, M. E., and S. N. V. Kalluri, 1994: The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring. Int. J. Remote Sens.,15, 3347–3363.

  • Justice, C. O., J. R. G. Townshend, B. N. Holben, and C. J. Tucker, 1985: Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens.,6, 1271–1318.

  • ——, T. F. Eck, D. Tanre, and B. N. Holben, 1991: The effect of water vapor on the NDVI derived for the Sahelian region from NOAA AVHRR data. Int. J. Remote Sens.,12, 1165–1188.

  • Kaufman, Y. J., 1989: The atmospheric effects on remote sensing and its correction. Theory and Applications of Optical Remote Sensing, G. Asrar, Ed., Wiley, 336–428.

  • ——, and B. N. Holben, 1993: Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. Int. J. Remote Sens.,14, 21–52.

  • Kerr, Y. H., J. Imbernon, G. Dedieu, O. Hautecoeur, J. P. Lagouarde, and B. Seguin, 1989: NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring. Int. J. Remote Sens.,10, 847–854.

  • Los, S. O., 1993: Calibration adjustment the NOAA AVHRR Normalized Difference Vegetation Index without recourse to component channel 1 and channel 2 data. Int. J. Remote Sens.,14, 1907–1917.

  • ——, C. O. Justice, and C. J. Tucker, 1994: A global 1 by 1 NDVI data set for climate studies derived from the GIMMS continental NDVIdata. Int. J. Remote Sens.,15, 3493–3518.

  • Malo, A. R., and S. E. Nicholson, 1990: A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index. J. Arid Environ.,19, 1–24.

  • Nicholson, S. E., and T. J. Farrar, 1994: The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semi-arid Botswana. Part I. Relationship to rainfall. Remote Sens. Environ.,50, 107–120.

  • ——, M. L. Davenport, and A. R. Malo, 1990: A comparison of vegetation response to rainfall in the Sahel and East Africa, using Normalized Difference Vegetation Index from NOAA AVHRR. Climate Change,17, 209–241.

  • ——, A. R. Lare, J. A. Marengo, and P. Santos, 1996: A revised version of Lettau’s evapoclimatonomy model. J. Appl. Meteor.,35, 549–561.

  • Sellers, P. J., 1985: Canopy reflectance, photosynthesis, and transpiration. Int. J. Remote Sens.,6, 1335–1372.

  • ——, C. J. Tucker, G. J. Collatz, S. O. Los, C. O. Justice, D. A. Dazlich, and D. A. Randall, 1994: A Global 1 × 1 NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI. Int. J. Remote Sens.,15, 3519–3545.

  • ——, S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J. Collatz, and D. A. Randall, 1996: A revised land surface parameterization (SiB2) for Atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate,9, 706–737.

  • Soufflet, V., D. Tanre, A. Begue, A. Podaire, and P. Y. Deschamps, 1991: Atmospheric effects on NOAA AVHRR data over Sahelian regions. Int. J. Remote Sens.,12, 1189–1204.

  • Townshend, J. R. G., and C. O. Justice, 1986: Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens.,7, 1555–1570.

  • Tucker, C. J., 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ.,8, 127–150.

  • ——, and L. D. Miller, 1977: Contribution of the soil spectra to grass canopy spectral reflectance. Photogramm. Eng. Remote Sens.,43, 721–726.

  • ——, and P. J. Sellers, 1986: Satellite remote sensing of primary production. Int. J. Remote Sens.,7, 1395–1416.

  • ——, B. N. Holben, J. H. Elgin, and J. E. McMurtrey, 1981: Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens. Environ.,11, 171–189.

  • ——, C. L. Vanpraet, E. Boerwinkel, and A. Gaston, 1983: Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens. Environ.,13, 461–474.

  • ——, ——, M. J. Sharman, and G. V. Ittersum, 1985a: Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ.,17, 233–249.

  • ——, J. R. G. Townshend, and T. E. Goff, 1985b: African land-cover classification using satellite data. Science,227, 369–375.

  • ——, H. E. Dregne, and W. W.Newcomb, 1991: Expansion and contraction of the Sahara desert from 1980 to 1990. Science,253, 299–301.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2972 1777 90
PDF Downloads 858 107 4