A Parameterization of Vertical Dispersion of Ground-Level Releases

Shuming Du College of Engineering, University of California, Riverside, Riverside, California

Search for other papers by Shuming Du in
Current site
Google Scholar
PubMed
Close
and
Akula Venkatram College of Engineering, University of California, Riverside, Riverside, California

Search for other papers by Akula Venkatram in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors propose a simple parameterization for estimating vertical dispersion in the surface boundary layer. It improves upon methods proposed earlier (e.g., by van Ulden, Briggs, and Pasquill and Smith) in that it is based on simulation results generated from a Lagrangian stochastic model, which represents the current understanding of dispersion; parameterizations proposed by other investigators have relied on semiempirical K theory or Lagrangian similarity theories. The new parameterization has been evaluated with data gathered from Project Prairie Grass and from the National Reactor Test Station in Idaho.

Corresponding author address: Dr. Akula Venkatram, College of Engineering, University of California, Riverside, Riverside, CA 92521-0425.

Abstract

The authors propose a simple parameterization for estimating vertical dispersion in the surface boundary layer. It improves upon methods proposed earlier (e.g., by van Ulden, Briggs, and Pasquill and Smith) in that it is based on simulation results generated from a Lagrangian stochastic model, which represents the current understanding of dispersion; parameterizations proposed by other investigators have relied on semiempirical K theory or Lagrangian similarity theories. The new parameterization has been evaluated with data gathered from Project Prairie Grass and from the National Reactor Test Station in Idaho.

Corresponding author address: Dr. Akula Venkatram, College of Engineering, University of California, Riverside, Riverside, CA 92521-0425.

Save
  • Barad, M. L., 1959: Project Prairie Grass, a Field Program in Diffusion. Vol. 1., Air Force Cambridge Research Center.

  • Briggs, G. A., 1982: Similarity forms for ground-source surface layer diffusion. Bound.-Layer Meteor.,23, 489–502.

  • ——, 1993: Plume dispersion in the convective boundary layer. Part II: Analyses of CONDORS field experiment data. J. Appl. Meteor.,32, 1388–1425.

  • Calder, K. L., 1961: Atmospheric diffusion of particulate material considered as a boundary value problem. J. Meteor.,18, 413.

  • Chaudhry, F. H., and R. N. Meroney, 1973: Similarity theory of diffusion and the observed vertical spread in the diabatic surface layer. Bound.-Layer Meteor.,3, 405–415.

  • Cimorelli, A. J., A. Venkatram, S. G. Perry, R. F. Lee, J. C. Weil, R. J. Paine, and R. B. Wilson, 1996: Current progress in the AERMIC model development program. 89th Annual Meeting and Exhibition, Air and Waste Manage. Assoc., 1–27.

  • Du, S., B. L. Sawford, J. D. Wilson, and D. J. Wilson, 1995: Estimation of the Kolmogorov constant (C0) for the Lagrangian structure function, using a second-order Lagrangian model of grid turbulence. Phys. Fluids,7, 3083–3090.

  • Durbin, P. A., and J. C. R. Hunt, 1980: Dispersion from elevated sources in turbulent boundary layers. J. Mech.,19, 679–695.

  • Elliott, W. P., 1961: The vertical diffusion of gas from a continuous source. Int. J. Air Water Pollut.,4, 33.

  • Gifford, F. A., 1961: Uses of routine meteorological observations for estimating atmospheric dispersion. Nucl. Saf.,2, 47–51.

  • Golder, D., 1972: Relations among stability parameters in the surface layer. Bound.-Layer Meteor.,3, 47–58.

  • Hanna, S. R., and R. J. Paine, 1989: Hybrid plume dispersion model (HPDM): Development and application. J. Appl. Meteor.,28, 206–224.

  • Haugen, D. A., 1973: Workshop on Micrometeorology. Amer. Meteor. Soc., 392 pp.

  • Horst, T. W., 1979: Lagrangian similarity modeling of vertical diffusion from a ground-level source. J. Appl. Meteor.,18, 733–740.

  • Hunt, J. C. R., and A. H. Weber, 1979: A Lagrangian statistical analysis of diffusion from a ground-level source in a turbulent boundary layer. Quart. J. Roy. Meteor. Soc.,105, 423–443.

  • Islitzer, N. F., and R. K. Dumbauld, 1963: Atmospheric diffusion–deposition studies over flat terrain. Int. J. Air Water Pollut.,7, 999–1022.

  • Lamb, R. G., 1982: Diffusion in the convective boundary layer. Atmospheric Turbulence and Air Pollution Modeling, F. T. M. Nieuwstadt and H. van Dop, Eds., D. Reidel Publishing, 159–320.

  • Nieuwstadt, F. T. M., and A. P. van Ulden, 1978: A numerical study on the vertical dispersion of passive contaminants from a continuous source in the atmospheric surface layer. Atmos. Environ.,12, 2119–2124.

  • Panofsky, H. A., and J. A. Dutton, 1984: Atmospheric Turbulence. John Wiley & Sons, 397 pp.

  • Pasquill, F., 1961: The estimation of the dispersion of windborne material. Meteor. Mag.,90, 33–49.

  • ——, and F. B. Smith, 1983: Atmospheric Diffusion. 3d ed. Ellis Horwood, 437 pp.

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature in the unstable atmospheric surface layer. J. Appl. Meteor.,9, 857–861.

  • Sawford, B. L., 1985: Lagrangian statistical simulation of concentration mean and fluctuation fields. J. Climate Appl. Meteor.,24, 1152–1166.

  • ——, and G. M. Guest, 1988: Uniqueness and universality of Lagrangian stochastic models of turbulent dispersion. Preprints, Eighth Symp. on Turbulence and Diffusion, San Diego, CA, Amer. Meteor. Soc., 96–99.

  • Sutton, O. G., 1947: The problem of diffusion in the lower atmosphere. Quart. J. Roy. Meteor. Soc.,73, 257.

  • ——, 1953: Micrometeorology. McGraw-Hill, 333 pp.

  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech.,180, 529–556.

  • Turner, D. B., 1970: Workbook of Atmospheric Dispersion Estimates. USEPA Office of Air Programs, 84 pp.

  • van Dop, H., F. T. M. Nieuwstadt, and J. C. R. Hunt, 1985: Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids,28, 1639–1653.

  • van Ulden, A. P., 1978: Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ.,12, 2125–2129.

  • Venkatram, A., 1982: A semi-empirical method to compute concentration associated with surface releases in the stable boundary layer. Atmos. Environ.,16, 245–248.

  • ——, and S. Du, 1997: An analysis of the asymptotic behavior of cross-windintegrated concentration using Lagrangian stochastic simulation. Atmos. Environ., in press.

  • Weil, J. C., 1985: Updating applied diffusion models. J. Climate Appl. Meteor.,24, 1111–1130.

  • Willis, G. E., and J. W. Deardorff, 1976: A laboratory model of diffusion into the convective planetary boundary layer. Quart. J. Roy. Meteor. Soc.,102, 427–446.

  • Wilson, J. D., 1982: Turbulent dispersion in the atmospheric surface layer. Bound.-Layer Meteor.,22, 399–420.

  • ——, G. W. Turtell, and G. E. Kidd, 1981: Numerical simulation of particle trajectories in inhomogeneous turbulence. II: Systems with variable turbulence velocity scale. Bound.-Layer Meteor.,21, 423–441.

  • Yaglom, A. M., 1972: Turbulent diffusion in the surface layer of the atmosphere. Izv. Akad. Nauk USSA, Atmos. Oceanic Phys.,8, 333–340.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 291 86 6
PDF Downloads 103 40 5