Complete Urban Surface Temperatures

J. A. Voogt Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by J. A. Voogt in
Current site
Google Scholar
PubMed
Close
and
T. R. Oke Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by T. R. Oke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An observation program using ground and airborne thermal infrared radiometers is used to estimate the surface temperature of urban areas, taking into account the total active surface area. The authors call this the complete urban surface temperature. This temperature is not restricted by the viewing biases inherent in remote sensors used to estimate surface temperature over rough surfaces such as cities. Two methods to estimate the complete surface temperature are presented. Results for three different land-use areas in the city of Vancouver, British Columbia, Canada, show significant differences exist between the complete, nadir, and off-nadir airborne estimates of urban surface temperature during daytime. For the sites and times studied, the complete surface temperature is shown to agree with airborne off-nadir estimates of the apparent surface temperature of the most shaded walls. Some implications of using the complete surface temperature to estimate screen level air temperature and to calculate surface sensible heat flux are given.

* Current affiliation: Department of Geography, University of Western Ontario, London, Ontario, Canada.

Corresponding author address: Dr. James A. Voogt, Dept. of Geography, University of Western Ontario, London, ON N6A 5C2, Canada.

Abstract

An observation program using ground and airborne thermal infrared radiometers is used to estimate the surface temperature of urban areas, taking into account the total active surface area. The authors call this the complete urban surface temperature. This temperature is not restricted by the viewing biases inherent in remote sensors used to estimate surface temperature over rough surfaces such as cities. Two methods to estimate the complete surface temperature are presented. Results for three different land-use areas in the city of Vancouver, British Columbia, Canada, show significant differences exist between the complete, nadir, and off-nadir airborne estimates of urban surface temperature during daytime. For the sites and times studied, the complete surface temperature is shown to agree with airborne off-nadir estimates of the apparent surface temperature of the most shaded walls. Some implications of using the complete surface temperature to estimate screen level air temperature and to calculate surface sensible heat flux are given.

* Current affiliation: Department of Geography, University of Western Ontario, London, Ontario, Canada.

Corresponding author address: Dr. James A. Voogt, Dept. of Geography, University of Western Ontario, London, ON N6A 5C2, Canada.

Save
  • Arnfield, A. J., 1982: An approach to the estimation of the surface radiative properties and radiation budgets of cities. Phys. Geogr.,3, 97–122.

  • Balick, L. K., B. A. Hutchison, J. A. Smith, and M. J. McGuire, 1987: Directional thermal infrared exitance distributions of a deciduous forest in summer. IEEE Trans. Geosci. Remote Sens.,GE-25, 410–412.

  • Boissard, P., G. Guyot, and R. D. Jackson, 1990: Factors affecting the radiative temperature of a vegetative canopy. Applications of Remote Sensing in Agriculture, M. D. Steven and J. A. Clark, Eds., Butterworths, 45–72.

  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications. Reidel, 299 pp.

  • Campbell, G. S., and J. M. Norman, 1989: The description and measurement of plant canopy structure. Plant Canopies: Their Growth, Form and Function, G. Russell, B. Marshall, and P. G. Jarvis, Eds., Cambridge University Press, 1–19.

  • Carlson, T. N., 1986: Regional scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sens. Rev.,1, 197–247.

  • Charles-Edwards, D. A., and J. H. M. Thornley, 1973: Light interception by an isolated plant: A simple model. Ann. Bot.,37, 919–28.

  • Chen, S. G., I. Impens, R. Ceulemans, and F. Kockelbergh, 1993: Measurement of gap fraction of fractal generated canopies using digitalized image analysis. Agric. Forest Meteor.,65, 245–259.

  • Dousset, B., 1989: AVHRR-derived cloudiness and surface temperature patterns over the Los Angelesarea and their relationships to land-use. Proc. IGARSS-89, Vancouver, BC, Canada, IEEE, 2132–2137.

  • Gallo, K. P., A. L. McNab, T. R. Karl, J. F. Brown, J. J. Hood, and J. D. Tarpley, 1993: The use of a vegetation index for assessment of the urban heat island effect. Int. J. Remote Sens.,14, 2223–2230.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Goel, N. S., 1988: Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev.,4, 1–212.

  • Grimmond, C. S. B., 1988: An evaporation-interception model for urban areas. Ph.D. thesis, University of British Columbia, 206 pp. [Available from the University of British Columbia Library, Special Collections, 1956 Main Mall, Vancouver, BC V6T 1Z1, Canada.].

  • Hall, F. G., K. F. Huemmrich, S. J. Goetz, P. J. Sellers, and J. E. Nickeson, 1992: Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. J. Geophys. Res.,97 (D17), 19 061–19 089.

  • Heilman, J. L., W. E. Heilman, and D. G. Moore, 1981: Remote sensing of canopy temperature at incomplete cover. Agron. J.73, 403–406.

  • Henry, J. A., S. E. Dicks, O. F. Wetterqvist, and S. J. Roguski, 1989: Comparison of satellite, ground-based, and modeling techniques for analyzing the urban heat island. Photogramm. Eng. Remote Sens.,55, 69–76.

  • Jupp, D. L. B., J. Walker, and L. K. Penridge, 1986: Interpretation of vegetation structure in Landsat MSS imagery: A case study in disturbed semi-arid eucalypt woodland. Part 2. Model-based analysis. J. Environ. Manag.,23, 35–57.

  • Kneizys, F. X., E. P. Shettle, L. W. Abreu, J. H. Chetwynd Jr., G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, 1988: User’s Guide to LOWTRAN 7. Air Force Geophysics Laboratory Rep. AFGL-TR-88-0177, 137 pp. [Available from Hanscom AFB, Air Force Geophysics Lab., Bedford, MA 01731.].

  • Kohsiek, W., H. A. R. de Bruin, H. The, and B. van den Hurk, 1993: Estimation of the sensible heat flux of a semi-arid area using surface radiative temperature measurements. Bound.-Layer Meteor.,63, 213–230.

  • Kramer, P. J., and T. T. Kozlowski, 1979: Physiology of Woody Plants. Academic Press, 811 pp.

  • Kustas, W. P., B. J. Choudhury, M. S. Moran, R. J. Reginato, R. D. Jackson, L. W. Gay, and H. L. Weaver, 1989: Determination of sensible hear flux over sparse canopy using thermal infrared data. Agric. Forest Meteor.,44, 197–216.

  • ——, ——, Y. Inoue, P. J. Pinter, M. S. Moran, R. D. Jackson, and R. J. Reginato, 1990: Ground and aircraft infrared observations over a partially vegetated area. Int. J. Remote Sens.,11, 409–427.

  • Lang, A. R. G., and R. E. McMurtrie, 1992: Total leaf areas of single trees of Eucalyptus grandis estimated from transmittances of the sun’s beam. Agric. Forest Meteor.,58, 79–92.

  • Lee, H.-Y., 1993: An application of NOAA AVHRR thermal data to the study of urban heat islands. Atmos Environ., 27B, 1–13.

  • Li, X., and A. H. Strahler, 1985: Geometrical-optical modelling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens.,GE-23, 705–721.

  • McGuire, M. J., L. K. Balick, J. A. Smith, and B.A. Hutchison, 1989: Modeling directional thermal radiance from a forest canopy. Remote Sens. Environ.,27, 169–186.

  • Nichol, J. E., 1996: High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteor.,35, 135–146.

  • Norman, J. M., M. Divakarla, and N. S. Goel, 1995: Algorithms for extracting information from remote thermal-IR observations of the earth’s surface. Remote Sens. Environ.,51, 157–168.

  • Paw U, K. T., 1992: Development of models for thermal infrared radiation above and within plant canopies. ISPRS J. Photogramm. Remote Sens.,47, 189–203.

  • Quattrochi, D. A., and M. K. Ridd, 1994: Measurement and analysis of thermal energy responses from discrete urban surfaces using remote sensing data. Int. J. Remote Sens.,15, 1991–2022.

  • Roth, M., and T. R. Oke, 1993: Turbulent transfer relationships over an urban surface. I: Spectral characteristics. Quart. J. Roy. Meteor. Soc.,119, 1071–1104.

  • ——, ——, and W. J. Emery, 1989: Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens.,10, 1699–1720.

  • Schmid, H.-P., 1988: Spatial scales of sensible heat flux variability representativeness of flux measurements and surface layer structure over suburban terrain. Ph.D. thesis, University of British Columbia, 299 pp. [Available from the University of British Columbia Library, Special Collections, 1956 Main Mall, Vancouver, BC V6T 1Z1, Canada.].

  • Singh, S. M., 1985: Remarks on the use of a Stefan–Boltzmann-type relation for estimating surface temperatures. Int. J. Remote Sens.,6, 741–747.

  • Steyn, D. G., 1980: Turbulence, diffusion and the daytime mixed layer depth over a coastal city. Ph.D. thesis, University of British Columbia, 161 pp. [Available from The University of British Columbia Library, Special Collections, 1956 Main Mall, Vancouver, BC V6T 1Z1, Canada.].

  • Stoll, M. J., and A. J. Brazel, 1992: Surface-air temperature relationships in the urban environment of Phoenix, Arizona. Phys. Geogr.,13, 160–179.

  • Sun, J., and L. Mahrt, 1995: Relationship of surface heat flux to microscale temperature variations: Application to BOREAS. Bound.-Layer Meteor.,76, 291–301.

  • Vancouver Planning Department, 1984: Map of Downtown Building Heights [1:12000] City of Vancouver. [Available from the Vancouver Planning Dept., 453 West 12th Ave., Vancouver, BC V5Y 1V4, Canada.].

  • Voogt, J. A., 1995: Thermal remote sensing of urban surface temperatures. Ph.D. thesis, University of British Columbia, 340 pp. [Available from the University of British Columbia Library, Special Collections, 1956 Main Mall, Vancouver, BC V6T 1Z1, Canada.].

  • Willmott, C. J., 1981: On the validation of models. Phys. Georgr.,2, 184–194.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3293 980 48
PDF Downloads 2042 451 37