Forecasting and Diagnostic Analysis of Plume Transport around a Power Plant

J. A. Souto Centro de Supercomputación de Galicia, Santiago de Compostela, Spain

Search for other papers by J. A. Souto in
Current site
Google Scholar
PubMed
Close
,
V. Pérez-Muñuzuri Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain

Search for other papers by V. Pérez-Muñuzuri in
Current site
Google Scholar
PubMed
Close
,
M. deCastro Centro de Supercomputación de Galicia, Santiago de Compostela, Spain

Search for other papers by M. deCastro in
Current site
Google Scholar
PubMed
Close
,
M. J. Souto Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain

Search for other papers by M. J. Souto in
Current site
Google Scholar
PubMed
Close
,
J. J. Casares Centro de Supercomputación de Galicia, Santiago de Compostela, Spain

Search for other papers by J. J. Casares in
Current site
Google Scholar
PubMed
Close
, and
T. Lucas Environmental Section, As Pontes Power Plant, As Pontes, Spain

Search for other papers by T. Lucas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A nonreactive Lagrangian atmospheric diffusion model is used for the simulation of SO2 concentration around the As Pontes 1400-MW power plant located in northwestern Spain. This diffusion model has two kinds of input: 1) diagnostic wind fields from real measurements and 2) forecast wind fields from a 24-h mesoscale prediction.

This model-based system is applied for a particular day around the As Pontes 1400-MW power plant, which is a coal-fired power plant. The shape of estimated and forecast plumes are compared, and the meteorological prediction results are analyzed.

Corresponding author address: Dr. J. A. Souto, Centro de Supercomputacion de Galicia, Av. Vigo, s/n, 15706 Santiago de Compostela, Spain.

Abstract

A nonreactive Lagrangian atmospheric diffusion model is used for the simulation of SO2 concentration around the As Pontes 1400-MW power plant located in northwestern Spain. This diffusion model has two kinds of input: 1) diagnostic wind fields from real measurements and 2) forecast wind fields from a 24-h mesoscale prediction.

This model-based system is applied for a particular day around the As Pontes 1400-MW power plant, which is a coal-fired power plant. The shape of estimated and forecast plumes are compared, and the meteorological prediction results are analyzed.

Corresponding author address: Dr. J. A. Souto, Centro de Supercomputacion de Galicia, Av. Vigo, s/n, 15706 Santiago de Compostela, Spain.

Save
  • Bennett, M., S. Sutton, and D. R. C. Gardiner, 1992: An analysis of LIDAR measurements of buoyant plume rise and dispersion at five power stations. Atmos. Environ.,26A, 3249–3263.

  • Berkowicz, R., and L. P. Prahm, 1982: Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmos. Environ.,16, 2809–2819.

  • Blackadar, A. K., 1979: High-resolution models of the planetary boundary layer. Adv. Environ. Sci. Eng.,1, 50–85.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr.,23, 1363–1388.

  • Briggs, G. A., 1972: Discussion of chimney plumes in neutral and stable surrounding. Atmos. Environ.,6, 507–510.

  • Businger, J. A., J. C. Wyngaard, T. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci.,28, 181–189.

  • Casdagli, M., 1989: Nonlinear prediction of chaotic time series. Physica D,35, 335–356.

  • Deardorff, J. W., 1974: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor.,7, 81–106.

  • ——, 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res.,83, 1889–1903.

  • Enger, L., 1990: Simulation of dispersion in moderately complex terrain. Part A: The fluid dynamic model. Atmos. Environ.,24A, 2431–2446.

  • Farmer, J. D., and G. G. Siderowich, 1987: Predicting chaotic time series. Phys. Rev. Lett.,59, 845–848.

  • Gimson, N. R., 1997: Pollution transport by convective clouds in a mesoscale model. Quart. J. Roy. Meteor. Soc.,123, 1805–1828.

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley and Sons, 450 pp.

  • Idso, S. B., and R. D. Jackson, 1969: Thermal radiation from the atmosphere. J. Geophys. Res.,74, 3397–3403.

  • Irwin, J. S., 1983: Estimating plume dispersion—A comparison of several sigma schemes. J. Climate Appl. Meteor.,22, 92–114.

  • Kondratyev, J., 1969: Radiation in the Atmosphere. Academic Press, 212 pp.

  • Lucas, T., J. Abadía, J. J. Casares, and J. A. Souto, 1993: Development of an emissions control system for a coal-fired power plant. Proc. Second Int. Conf. on Combustion Technologies for a Clean Environment, Lisbon, Portugal, Gulbekian Foundation, 9–16.

  • Ludwig, F. L., R. Salvador, and R. Bornstein, 1989: An adaptive volume plume model. Atmos. Environ.,23, 127–138.

  • McCumber, M. C., and R. A. Pielke, 1991: Simulations of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Part I: Soil layer. J. Geophys. Res.,86, 9929–9938.

  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci.,27, 1213–1215.

  • Pérez-Muñuzuri, V., 1998: Forecasting of chaotic cloud absorption time series for meteorological and plume dispersion modeling. J. Appl. Meteor., in press.

  • ——, M. J. Souto, J. J. Casares, and V. Pérez-Villar, 1996: Terrain-induced focusing of wind fields in the mesoscale. Chaos, Solitons Fractals,7, 1479–1494.

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612 pp.

  • ——, and Y. Mahrer, 1975: Technique to represent the heated-planetary boundary layer in mesoscale models with coarse vertical resolution. J. Atmos. Sci.,32, 2288–2308.

  • ——, and C. L. Martin, 1981: The derivation of a terrain-following coordinate system for use in a hydrostatic model. J. Atmos. Sci.,38, 1707–1713.

  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc.,122, 1127–1151.

  • Smeda, M. S., 1979: Incorporation of planetary boundary-layer processes into numerical forecasting models. Bound.-Layer Meteor.,16, 115–129.

  • Souto, J. A., V. Pérez-Muñuzuri, F. L. Ludwig, and J. J. Casares, 1994: Meteorological and atmospheric diffusion modeling for air pollution forecasting. Computer Techniques in Environmental Studies, V. P. Zannetti, Ed., Computational Mechanics, 281–288.

  • ——, ——, M. DeCastro, J. J. Casares, and J. Abadía, 1996: Application of short and 24 hours air pollution forecasting around a power plant. Air Pollution IV: Monitoring, Simulation and Control, B. Caussade, H. Power, and C. A. Brebbia, Eds., Computational Mechanics, 21–30.

  • Stull, R. B., 1991: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Zhang, X., and A. F. Ghoniem, 1994: A computational model for the rise and dispersion of wind-blown, buoyancy-driven plumes—II: Linearly stratified atmosphere. Atmos. Environ.,28, 3005–3018.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 719 506 37
PDF Downloads 85 21 2