Turbidity Determination from Broadband Irradiance Measurements: A Detailed Multicoefficient Approach

Christian A. Gueymard Florida Solar Energy Center, Cocoa, Florida

Search for other papers by Christian A. Gueymard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A physically modeled method is presented to obtain accurate turbidity determinations from broadband direct irradiance measurements. The method uses parameterizations of various extinction processes affecting the transfer of shortwave radiation in a cloudless atmosphere. The integration over the shortwave solar spectrum is performed with a more realistic weighting function than is conventionally used. The calculation and properties of the broadband aerosol optical depth are discussed in detail as a function of the aerosol optical characteristics. The method is general, as it can predict any one of the four turbidity coefficients currently used in climatological studies as defined by Ångström, Linke, Unsworth–Monteith, and Schüepp. Formal interrelationships are proposed so that climatological data based on different coefficients can be consistently intercompared without recourse to empirical formulas. The new parameterizations are more detailed than those of the literature, particularly regarding the optical depth of the clean dry atmosphere that now depends explicitly on the stratospheric ozone and nitrogen dioxide amounts. This inevitably induces changes in the prediction of the broadband turbidity coefficients (Linke and Unsworth–Monteith), particularly at small zenith angles when compared to older calculations. These coefficients are also shown to depend on zenith angle and precipitable water, causing parasitic variations of turbidity during a day or the year even if the aerosol characteristics do not vary. The masking effect of tropospheric nitrogen dioxide is presented, as well as a method to correct the predicted turbidity for circumsolar radiation. A detailed error analysis is discussed, showing that the instrumental error and the estimation error on precipitable water are the main limiting factors of the method. Although smaller potential error is obtained at larger zenith angles, accurate estimates of precipitable water are necessary for valid turbidity predictions when applied to clean dry atmospheres. A limited test of the method is presented, using spectral radiative data from five different sites as the reference. The method performs well, provided that accurate precipitable water data can be obtained. In contrast, the older Louche’s method is shown to produce unrealistic negative values under clean dry conditions. Monthly average turbidity over 3–4 years was also obtained from hourly irradiance at two sites with widely different aerosol regimes. Compared to the present results, Louche’s method is found to overpredict the Unsworth–Monteith coefficient at both sites, while simultaneously underpredicting the Ångström coefficient at the clearest site.

Corresponding author address: Dr. Christian Gueymard, 2959 Ragis Rd., Edgewater, FL 32132.

chris@fsec.ucf.edu

Abstract

A physically modeled method is presented to obtain accurate turbidity determinations from broadband direct irradiance measurements. The method uses parameterizations of various extinction processes affecting the transfer of shortwave radiation in a cloudless atmosphere. The integration over the shortwave solar spectrum is performed with a more realistic weighting function than is conventionally used. The calculation and properties of the broadband aerosol optical depth are discussed in detail as a function of the aerosol optical characteristics. The method is general, as it can predict any one of the four turbidity coefficients currently used in climatological studies as defined by Ångström, Linke, Unsworth–Monteith, and Schüepp. Formal interrelationships are proposed so that climatological data based on different coefficients can be consistently intercompared without recourse to empirical formulas. The new parameterizations are more detailed than those of the literature, particularly regarding the optical depth of the clean dry atmosphere that now depends explicitly on the stratospheric ozone and nitrogen dioxide amounts. This inevitably induces changes in the prediction of the broadband turbidity coefficients (Linke and Unsworth–Monteith), particularly at small zenith angles when compared to older calculations. These coefficients are also shown to depend on zenith angle and precipitable water, causing parasitic variations of turbidity during a day or the year even if the aerosol characteristics do not vary. The masking effect of tropospheric nitrogen dioxide is presented, as well as a method to correct the predicted turbidity for circumsolar radiation. A detailed error analysis is discussed, showing that the instrumental error and the estimation error on precipitable water are the main limiting factors of the method. Although smaller potential error is obtained at larger zenith angles, accurate estimates of precipitable water are necessary for valid turbidity predictions when applied to clean dry atmospheres. A limited test of the method is presented, using spectral radiative data from five different sites as the reference. The method performs well, provided that accurate precipitable water data can be obtained. In contrast, the older Louche’s method is shown to produce unrealistic negative values under clean dry conditions. Monthly average turbidity over 3–4 years was also obtained from hourly irradiance at two sites with widely different aerosol regimes. Compared to the present results, Louche’s method is found to overpredict the Unsworth–Monteith coefficient at both sites, while simultaneously underpredicting the Ångström coefficient at the clearest site.

Corresponding author address: Dr. Christian Gueymard, 2959 Ragis Rd., Edgewater, FL 32132.

chris@fsec.ucf.edu

Save
  • Abdelrahman, M. A., S. A. M. Said, and A. N. Shuaib, 1988: Comparison between atmospheric turbidity coefficients of desert and temperate climates. Sol. Energy,40, 219–225.

  • Al-Jamal, K., S. Ayyash, M. Rasas, S. Al-Aruri, and N. Shaban, 1987:Atmospheric turbidity in Kuwait. Atmos. Environ.,21, 1855–1859.

  • Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, 1986: AFGL atmospheric constituent profiles (0–120 km). Tech. Rep. AFGL-TR-86–0110, 43 pp. [Available from Air Force Geophysics Lab., Hanscom AFB, MA 01731.].

  • ——, and Coauthors, 1993: MODTRAN2: Suitability for remote sensing. Proc. Atmospheric Propagation and Remote Sensing II, Orlando, FL, SPIE, 514–525.

  • Ångström, A., 1929: On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Annal.,2, 156–166.

  • ——, 1961: Radiation to actinometric receivers in its dependence on aperture conditions. Tellus,13, 425–431.

  • ——, 1970: On determination of the atmospheric turbidity and their relation to pyrheliometric measurements. Advances in Geophysics, Vol. 14, Academic Press, 269–284.

  • ——, and B. Rodhe, 1966: Pyrheliometric measurements with special regard to the circumsolar radiation. Tellus,18, 25–33.

  • Bergstrom, R. W., and J. T. Peterson, 1977: Comparison of predicted and observed solar radiation in an urban area. J. Appl. Meteor.,16, 1107–1116.

  • Berk, A., L. S. Bernstein, and D. C. Robertson, 1989: MODTRAN:A moderate resolution model for LOWTRAN7. Tech. Rep. GL-TR-89–0122, 38 pp. [Available from Air Force Geophysics Lab., Hanscom, MA, 01731.].

  • Bevington, P. R., 1969: Data Reduction and Error Analysis for the Physical Sciences. McGraw–Hill, 336 pp.

  • Bird, R. E., and R. L. Hulstrom, 1981: Review, evaluation, and improvement of direct irradiance models. Trans. ASME: J. Sol. Energy Eng.,103, 182–192.

  • ——, and C. Riordan, 1986: Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Climate Appl. Meteor.,25, 87–97.

  • Blättner, W., 1983: Utilization instruction for the BRITE Monte-Carlo procedure. Res. Note RRA-N8303, 104 pp. [Available from Radiation Research Associates, Fort Worth, TX, 76107.].

  • Bolsenga, S. J., 1965: The relationship between total atmospheric water vapor and surface dew point on a mean daily and hourly basis. J. Appl. Meteor.,4, 430–432.

  • Box, M. A., and A. Deepak, 1979: Atmospheric scattering corrections to solar radiometry. Appl. Opt.,18, 1941–1949.

  • ——, and ——, 1981: An approximation to multiple scattering in the earth’s atmosphere: Almucantar radiance formulation. J. Atmos. Sci.,38, 1037–1048.

  • Braslau, N., and J. V. Dave, 1973: Effect of aerosols on the transfer of solar energy through realistic model atmospheres. J. Appl. Meteor.,12, 601–619.

  • Bruegge, C. J., J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, and G. Toon, 1992: Water vapor column abundance retrievals during FIFE. J. Geophys. Res.,97(D), 18759–18768.

  • Cachorro, V. E., J. L. Casanova, and A. M. de Frutos, 1987a: The influence of Ångström parameters on calculated direct spectral irradiances at high turbidity. Sol. Energy,39, 399–407.

  • ——, A. M. de Frutos, and J. L. Casanova, 1987b: Determination of the Ångström turbidity parameters. Appl. Opt.,26, 3069–3076.

  • ——, M. J. Gonzalez, A. M. de Frutos, and J. L. Casanova, 1989: Fitting Ångström’s formula to spectrally resolved aerosol optical thickness. Atmos. Environ.,23, 265–270.

  • Cañada, J., J. M. Pinazo, and J. V. Bosca, 1993: Determination of Ångström’s turbidity coefficient at Valencia. Renew. Energy,3, 621–626.

  • CSAGI, 1957: Radiation instruments and measurements. Annals of the International Geophysical Year, Instruction Manual, Pergamon Press, 463 pp.

  • Cuomo, V., F. Esposito, G. Pavese, and C. Serio, 1993: Determining Ångström’s turbidity coefficients—An analysis with a wide-range grating spectrometer. Aerosol Sci. Tech.,18, 59–69.

  • Daumont, D., J. Brion, J. Charbonnier, and J. Malicet, 1992: Ozone UV spectroscopy I: Absorption cross-sections at room temperature. J. Atmos. Chem.,15, 145–155.

  • Davidson, J. A., C. A. Cantrell, A. H. McDaniel, R. E. Shetter, S. Madronich, and J. G. Calvert, 1988: Visible-ultraviolet absorption cross sections for NO2 as a function of temperature. J. Geophys. Res.,93(D), 7105–7112.

  • Dogniaux, R., 1986: The estimation of atmospheric turbidity. Proc. Advances in European Solar Radiation Climatology, London, United Kingdom, U.K. Int. Sol. Energy Soc., 3.1–3.4.

  • ——, Ed., 1994: Prediction of Solar Radiation in Areas with a Specific Microclimate. Kluwer, 107 pp.

  • Dutton, E. G., P. Reddy, S. Ryan, and J. J. DeLuisi, 1994: Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992. J. Geophys. Res.,99(D), 8295–8306.

  • Feussner, K., and P. Dubois, 1930: Trübungsfaktor, precipitable water, Staub. Gerlands Beitr. Geophys.,27, 132–175.

  • Fox, J. D., 1994: Calculated Ångström’s turbidity coefficients for Fairbanks, Alaska. J. Climate,7, 1506–1512.

  • Freund, J., 1983: Aerosol optical depth in the Canadian Arctic. Atmos.–Ocean,21, 158–167.

  • Garrison, J., 1995: An evaluation of the effect of volcanic eruption on the solar radiation at six Canadian stations. Sol. Energy,55, 513–525.

  • ——, and G. P. Adler, 1990: Estimation of precipitable water over the United States for application to the division of solar radiation into its direct and diffuse components. Sol. Energy,44, 225–241.

  • ——, and K. Sahami, 1995: Analysis of clear hour solar irradiation for seven Canadian stations. Sol. Energy,55, 505–512.

  • Gates, D. M., 1962: Energy Exchange in the Biosphere. Harper & Row.

  • Grenier, J. C., A. de la Casinière, and T. Cabot, 1994: A spectral model of Linke’s turbidity factor and its experimental implications. Sol. Energy,52, 303–314.

  • ——, ——, and ——, 1995: Atmospheric turbidity analyzed by means of standardized Linke’s turbidity factor. J. Appl. Meteor.,34, 1449–1458.

  • Gueymard, C., 1993: Atmospheric turbidity in Florida. Tech. Rep. FSEC-PF-247-93, 7 pp. [Available from Florida Sol. Energy Center, 1679 Clearlake Rd., Cocoa, FL 32922-5703.].

  • ——, 1994a: Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States. Sol. Energy,53, 57–71.

  • ——, 1994b: Updated transmittance functions for use in fast spectral direct beam irradiance models. Proc. Sol. ’94 Conf., San Jose, CA, Amer. Sol. Energy Soc., 355–360.

  • ——, 1995: SMARTS2, a Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment. Tech. Rep. FSEC-PF-270-95, 78 pp. [Available from Florida Sol. Energy Center, 1679 Clearlake Rd., Cocoa, FL 32922-5703.].

  • ——, and J. D. Garrison, 1998: Critical evaluation of precipitable water and atmospheric turbidity in Canada using measured hourly solar irradiance. Sol. Energy, in press.

  • ——, and H. D. Kambezidis, 1997: Illuminance turbidity parameters and atmospheric extinction in the visible spectrum. Quart J. Roy. Meteor. Soc.,123, 679–697.

  • Harrison, L., and J. J. Michalsky, 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt.,33, 5126–5132.

  • ——, J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Appl. Opt.,33, 5118–5125.

  • Hay, J. E., and R. Darby, 1984: El Chichon—Influence on aerosol optical depth and direct, diffuse and total solar irradiances at Vancouver, B.C. Atmos.–Ocean,22, 354–368.

  • Hinzpeter, H., 1950: Über Trübungsbestimmungen in Potsdam in dem Jahren 1946 und 1947. Meteor.,4, 1.

  • Horvath, H., 1994: Remarks and suggestions on nomenclature and symbols in atmospheric optics. Atmos. Environ.,28, 757–759.

  • Hoyt, D. V., 1975: New calculations of the Linke turbidity coefficient. Quart J. Roy. Meteor. Soc.,101, 383–385.

  • IAMAP, 1986: A preliminary cloudless standard atmosphere for radiation computation. Rep. WCP-112, WMO/TD-No. 24, 53 pp. [Available from World Meteorological Organization, Case Postale 2300, CH-1211 Geneva 2, Switzerland.].

  • Idso, S. B., 1969: Atmospheric attenuation of solar radiation. J. Atmos. Sci.,26, 1088–1095.

  • Kambezidis, H. D., D. H. Founda, and N. S. Papanikolaou, 1993: Linke and Unsworth–Monteith turbidity parameters in Athens. Quart J. Roy. Meteor. Soc.,119, 367–374.

  • Kasten, F., 1980: A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor. Meteor. Rundsch.,33, 124–127.

  • ——, 1988: Elimination of the virtual diurnal variation of the Linke turbidity factor. Meteor. Rundsch.,41, 93–94.

  • ——, 1996: The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Sol. Energy,56, 239–244.

  • Katz, M., A. Baille, and M. Mermier, 1982: Atmospheric turbidity in a semi-rural site. Part I: Evaluation and comparison of different atmospheric turbidity coefficients. Sol. Energy,28, 323–327.

  • Leckner, B., 1978: The spectral distribution of solar radiation at the Earth’s surface—Elements of a model. Sol. Energy,20, 143–150.

  • Linke, F., 1922: Transmissions-Koeffizient und Trübungsfaktor. Beitr. Phys. Atmos.,10, 91–103.

  • Louche, A., G. Peri, and M. Iqbal, 1986: An analysis of Linke turbidity factor. Sol. Energy,37, 393–396.

  • ——, M. Maurel, G. Simonnot, G. Peri, and M. Iqbal, 1987: Determination of Ångström’s turbidity coefficient from direct total solar irradiance measurements. Sol. Energy,38, 89–96.

  • Major, G., 1994: Circumsolar correction for pyrheliometers and diffusometers. Rep. WMO/TD-No. 635, 42 pp. [Available from World Meterological Organization, Case Postale 2300, CH-1211 Geneva, Switzerland.].

  • Maxwell, E. L., D. R. Myers, M. D. Rymes, T. L. Stoffel, and S. M. Wilcox, 1991: Producing a national solar radiation data base. 1991 Solar Wind Congress, M. E. Arden, S. M. A. Burley, and M. Coleman, Eds., Pergamon Press, 1007–1012.

  • ——, W. F. Marion, D. R. Myers, M. D. Rymes, and S. M. Wilcox, 1995: National Solar Radiation Data Base—Final Technical Report. Tech. Rep. NREL/TP-463–5784, 289 pp. [Available from National Renewable Energy Laboratory, Golden, CO, 80401-3393.].

  • McGee, O. S., 1974: A surface dewpoint-precipitable water vapour relationship for South Africa. South Afr. J. Sci.,70, 119–120.

  • McGuffie, K., J. G. Cogley, and A. Henderson-Sellers, 1985: Climatological analysis of Arctic aerosol quantity and optical properties at Resolute, N. W. T. Atmos. Environ.,19, 707–714.

  • Molineaux, B., and P. Ineichen, 1996: On the broad band transmittance of direct irradiance in a cloudless sky and its application to the parameterization of atmospheric turbidity. Sol. Energy,56, 553–563.

  • Myers, D. R., 1989: Estimates of uncertainty for measured spectra in the SERI spectral solar radiation data base. Sol. Energy,43, 347–353.

  • ——, and E. L. Maxwell, 1992: Hourly estimates of precipitable water for solar radiation models. Proc. Solar ’92, Cocoa Beach, FL, Amer. Sol. Energy Soc., 317–322.

  • Pastiels, R., 1959: Contribution à l’étude du problème des méthodes actinométriques. Institut Royal Métérologique Rep. A11, 128 pp.

  • Polavarapu, R. J., 1978: Atmospheric turbidity over Canada. J. Appl. Meteor.,17, 1368–1374.

  • Putsay, M., 1995: Circumsolar radiation calculated for various aerosol models. Idójárás,99, 67–76.

  • Rawlins, F., and R. J. Armstrong, 1985: Recent measurements of broad-band turbidity in the United Kingdom. Meteor. Mag.,114, 89–99.

  • Reagan, J. A., L. W. Thomason, B. M. Herman, and J. M. Palmer, 1986: Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements. IEEE Trans. Geosci. Remote Sens.,GE-24, 258–266.

  • Reber, E. E., and J. R. Swope, 1972: On the correlation of the total precipitable water in a vertical column and absolute humidity at the surface. J. Appl. Meteor.,11, 1322–1325.

  • Reitan, C. H., 1963: Surface dew point and water vapor aloft. J. Appl. Meteor.,2, 776–779.

  • Riordan, C., D. Myers, M. Rymes, R. Hulstrom, W. Marion, C. Jennings, and C. Whitaker, 1989a: Spectral solar radiation data base at SERI. Sol. Energy,42, 67–79.

  • ——, T. L. Stoffel, and R. L. Hulstrom, 1989b: The effects of urban air pollution on solar radiation. Rep. SERI/TR-215-3482, 38 pp. [Available from National Renewable Energy Laboratory, Golden, CO, 80401-3393.].

  • ——, D. R. Myers, and R. L. Hulstrom, 1990: Spectral data base documentation. Tech. Rep. SERI/TR-215–3513, 52 pp. [Available from National Renewable Energy Laboratory, Golden, CO 80401-3393].

  • Roosen, R. G., R. J. Angione, and C. H. Klemcke, 1973: Worldwide variations in atmospheric transmission: 1. Baseline results from Smithsonian observations. Bull. Amer. Meteor. Soc.,54, 307–316.

  • Schroeder, R., and J. A. Davies, 1987: Significance of nitrogen dioxide in estimating aerosol optical depth and size distributions. Atmos.–Ocean,25, 107–114.

  • Schüepp, W., 1949: Die Bestimmung der Konponenten der atmosphärischen Trübung aus Aktinometer Messungen. Arch. Meteor. Geophys. Bioklimatol.,B1, 257.

  • Schwarz, F. K., 1968: Comments on “Note on the relationship between total precipitable water and surface dew point.” J. Appl. Meteor.,7, 509–510.

  • Shaw, G. E., 1982: Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory. Appl. Opt.,21, 2006–2011.

  • ——, J. A. Reagan, and B. M. Herman, 1973: Investigations of atmospheric extinction using direct solar radiation measurements made with a multiple wavelength radiometer. J. Appl. Meteor.,12, 374–380.

  • Shettle, E. P., and R. W. Fenn, 1979: Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Rep. AFGL-TR-79–0214, 94 pp. [Available from Air Force Geophysics Lab, Hanscom AFB, MA 01731.].

  • Shiobara, M., J. D. Spinhirne, A. Uchiyama, and S. Asano, 1996: Optical depth measurements of aerosol, cloud, and water vapor using sun photometers during FIRE Cirrus IFO II. J. Appl. Meteor.,35, 36–46.

  • Smith, W. L., 1966: Note on the relationship between total precipitable water and surface dew point. J. Appl. Meteor.,5, 726–727.

  • Stothers, R. B., 1996: Major optical depth perturbations to the stratosphere from volcanic eruptions: Pyrheliometric period, 1881–1960. J. Geophys. Res.,101(D), 3901–3920.

  • Szymber, R. J., and W. D. Sellers, 1985: Atmospheric turbidity atTucson, Arizona, 1956–83: Variations and their causes. J. Climate Appl. Meteor.,24, 725–734.

  • Thomason, L. W., R. J. Szymber, and B. M. Herman, 1982: An examination of reduction techniques for determining the Linke turbidity factor. J. Appl. Meteor.,21, 1524–1527.

  • Uboegbulam, T. C., and J. A. Davies, 1983: Turbidity in eastern Canada. J. Climate Appl. Meteor.,22, 1384–1392.

  • Unsworth, M. H., and J. L. Monteith, 1972: Aerosol and solar radiation in Britain. Quart J. Roy. Meteor. Soc.,98, 778–797.

  • ——, and H. A. McCartney, 1973: Effects of atmospheric aerosols on solar radiation. Atmos. Environ.,7, 1173–1185.

  • Valko, P., 1967: Über den Zusammenhang zwischen Trübungsfaktor und Trübungs koeffizient. Arch. Meteor. Geophys. Bioklimatol.,B15, 359–375.

  • Volz, F., 1959: Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlängenabhängigkeit der Dunsttrübung. Arch. Meteor. Geophys. Bioklimatol.,B10, 100–131.

  • WMO, 1981: Meteorological aspects of the utilization of solar radiation as an energy source. Tech. Note 172, WMO 557, 273 pp. [Available from World Meteorological Organization, Case Postale 2300, CH-1211 Geneva 2, Switzerland.].

  • Won, T. K., 1977: The simulation of hourly global radiation from hourly reported meteorological parameters—Canadian prairie area. Proc. Third Annual Conf., Edmonton, AB, Canada, Sol. Energy Society of Canada.

  • Yamamoto, G., M. Tanaka, and K. Arao, 1968: Hemispherical distribution of turbidity coefficient as estimated from direct solar radiation measurements. J. Meteor. Soc. Japan,46, 278–300.

  • ——, ——, and ——, 1971: Secular variation of atmospheric turbidity over Japan. J. Meteor. Soc. Japan,49, 859–865.

  • Yamashita, S., 1974: A comparative study of turbidity in an urban and a rural environment at Toronto. Atmos. Environ.,8, 507–518.

  • Young, A. T., 1974: Observational technique and data reduction. Astrophysics, Pt. A: Optical and Infrared, Vol. 12, N. Carleton, Ed., Academic Press, 123–192.

  • Zerlaut, G. A., 1983: Solar radiation measurements: Calibration and standardization efforts. Advances in Solar Energy, Vol. 1, K. W. Böer, and J. A. Duffie, Eds., Amer. Sol. Energy Soc., 19–59.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 554 139 16
PDF Downloads 389 109 13