• Adler, R. F., G. J. Huffman, and P. R. Keehn, 1994: Global rain estimates from microwave-adjusted geosynchronous IR data. Remote Sens. Rev.,11, 125–152.

  • Anagnostou, E. N., and C. Kummerow, 1997: Stratiform and convective classification of rainfall using SSM/I 85-GHz brightness temperature measurements. J. Atmos. Oceanic Technol.,14, 570–575.

  • Anthes, R. A., 1982: Tropical Cyclones—Their Evolution, Structure and Effects. Meteor. Monogr., No. 41, Amer. Meteor. Soc., 208 pp.

  • Ashcroft, P., and F. J. Wentz, 1996: Algorithm theoretical basis document—AMSR level-1C algorithm. RSS Tech. Rep. 121296, Remote Sensing Systems, Santa Rosa, CA, 26 pp. [Available from Remote Sensing Systems, 1101 College Ave., Santa Rosa, CA 95404.].

  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the 10–11 June 1985 squall line. J. Atmos. Sci.,50, 3091–3110.

  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev.,120, 947–957.

  • Braun, S. A., and R. A. Houze Jr., 1996: The heat budget of a midlatitude squall line and implications for potential vorticity production. J. Atmos. Sci.,53, 1217–1240.

  • Chang, C.-P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci.,45, 1709–1720.

  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci.,41, 933–960.

  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci.,42, 1944–1959.

  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv.,5, 19–60.

  • Ferrier, B. S., J. Simpson, and W.-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall line simulations. Mon. Wea. Rev.,124, 2100–2125.

  • Flatau, P., G. J. Tripoli, J. Berlinder, and W. Cotton, 1989: The CSU-RAMS cloud microphysics model: General theory and code documentation. Atmospheric Sciences Rep. 451, Colorado State University, Fort Collins, CO, 88 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

  • Frank, W. M., H. Wang, and J. L. McBride, 1996: Rawinsonde budget analyses during the TOGA COARE IOP. J. Atmos. Sci.,53, 1761–1780.

  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters of large-scale dynamics and climate. J. Atmos. Sci.,41, 113–121.

  • Hauser, D., F. Roux, and P. Amayenc, 1988: Comparison of two methods for the retrieval of thermodynamic and microphysical variables from Doppler-radar measurements: Application to the case of a tropical squall line. J. Atmos. Sci.,45, 1285–1303.

  • Heymsfield, G. M., and R. Fulton, 1994a: Passive microwave and infrared structure of mesoscale convective systems. Meteor. Atmos. Phys.,54, 123–139.

  • ——, and ——, 1994b: Passive microwave structure of severe tornadic storms on 16 November 1987. Mon. Wea. Rev.,122, 2587–2595.

  • Hollinger, J., R. Lo, G. Poe, R. Savage, and J. Peirce, 1987: Special Sensor Microwave/Imager user’s guide. Naval Research Laboratory, Washington, DC, 120 pp. [Available from Naval Research Laboratory, Washington, DC 20375.].

  • Hong, Y., C. D. Kummerow, and W. S. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperature. J. Appl. Meteor., in press.

  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc.,115, 425–461.

  • ——, F. D. Marks Jr., and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci.,49, 943–962.

  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate,8, 1284–1295.

  • Johnson, R. H., 1976: The role of convective-scale precipitation downdrafts in cumulus and synoptic–scale interactions. J. Atmos. Sci.,33, 1890–1910.

  • Jorgensen, D. P., T. J. Matejka, D. Johnson, and M. A. LeMone, 1994:A TOGA/COARE squall line seen by multiple Doppler radars. Preprints, Sixth Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., 25–28.

  • Karstens, U., C. Simmer, and E. Ruprecht, 1994: Remote sensing of cloud liquid water. Meteor. Atmos. Phys.,54, 157–171.

  • Karyampudi, V. M., G. S. Lai, and J. Manobianco, 1998: Impact of initial conditions, rainfall assimiliation, and cumulus parameterization on simulations of Hurricane Florence (1988). Mon. Wea. Rev.,126, 3077–3101.

  • Kasahara, A., A. P. Mizzi, and L. J. Donner, 1992: Impact of cumulus initialization on the spinup of precipitation forecasts in the tropics. Mon. Wea. Rev.,120, 1360–1380.

  • Krishnamurti, T. N., J. Xue, H. S. Bedi, K. Ingles, and O. Oosterhof, 1991: Physical initialization for numerical weather prediction over the tropics. Tellus,43AB, 53–81.

  • Kummerow, C., 1998: Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteor.,37, 356–370.

  • ——, W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens.,34, 1213–1232.

  • ——, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol.,15, 809–817.

  • Lau, K.-M., and L. Peng, 1987: Origin of the low-frequency (intraseasonal) oscillation in the tropical atmosphere. J. Atmos. Sci.,44, 950–972.

  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci.,53, 3367–3383.

  • Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci.,52, 1807–1828.

  • Marks, F., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev.,113, 909–930.

  • Mayfield, M., L. Avila, and E. N. Rappaport, 1994: Atlantic hurricane season of 1992. Mon. Wea. Rev.,122, 517–538.

  • Ogura, Y., and H.-R. Cho, 1973: Diagnositic determination of cumulus cloud populations from observed large-scale variables. J. Atmos. Sci.,30, 1276–1286.

  • Olson, W. S., C. D. Kummerow, G. M. Heymsfield, and L. Giglio, 1996: A method for combined passive–active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor.,35, 1763–1789.

  • Panegrossi, G., and Coauthors, 1998: Use of cloud model microphysics for passive microwave-based precipitation retrieval: Significance of consistency between model and measurement manifolds. J. Atmos. Sci.,55, 1644–1673.

  • Peng, M. S., and S. W. Chang, 1996: Impacts of SSM/I retrieved rainfall rates on numerical prediction of a tropical cyclone. Mon. Wea. Rev.,124, 1181–1198.

  • Petty, G. W., 1994: Physical retrieval of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices. Meteor. Atmos. Phys.,54, 79–100.

  • ——, and J. Turk, 1996: Observed multichannel microwave signatures of spatially extensive precipitation in tropical cyclones. Preprints, Eighth Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., 291–294.

  • Raymond, W. H., W. S. Olson, and G. Callan, 1995: Diabatic forcing and initialization with assimilation of cloud water and rainwater in a forecast model. Mon. Wea. Rev.,123, 366–382.

  • Rickenbach, T. M., and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci.,55, 2715–2729.

  • Rodgers, E. B., and R. F. Adler, 1981: Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev.,109, 506–521.

  • ——, and H. F. Pierce, 1995: A satellite observational study of precipitation characteristics in western North Pacific tropical cyclones. J. Appl. Meteor.,34, 2587–2599.

  • ——, S. W. Chang, and H. F. Pierce, 1994: A satellite observational and numerical study of the precipitation characteristics in western North Atlantic tropical cyclones. J. Appl. Meteor.,33, 129–139.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci.,40, 1185–1206.

  • Schols, J., J. Hafermann, J. Weinman, C. Prabhakara, M. Cadeddu, and C. Kummerow, 1997: Polarized microwave radiation model of melting deformed hydrometeors. Preprints, Ninth Conf. on Atmospheric Radiation, Long Beach, CA, Amer. Meteor. Soc., 270–273.

  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci.,39, 1687–1697.

  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci.,39, 378–394.

  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. Thiele, 1997: Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc.,78, 2817–2836.

  • Simpson, J., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc.,69, 278–295.

  • Smith, E. A., X. Xiang, A. Mugnai, and G. J. Tripoli, 1994: Design of an inversion-based precipitation profile retrieval algorithm using an explicit cloud model for initial guess microphysics. Meteor. Atmos. Phys.,54, 53–78.

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol.,6, 254–273.

  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev.,114, 1539–1546.

  • Sui, C.-H., and K.-M. Lau, 1989: Origin of the low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci.,46, 37–56.

  • Tao, W.-K., and J. Simpson, 1993: Goddard Cumulus Ensemble Model. Part I: Model description. Terrest. Atmos. Oceanic Sci.,4, 35–72.

  • ——, ——, S. Lang, M. McCumber, R. Adler, and R. Penc, 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor.,29, 1232–1244.

  • ——, ——, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou, and K. Pickering, 1993a: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci.,50, 673–690.

  • ——, S. Lang, J. Simpson, and R. Adler, 1993b: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan,71, 685–700.

  • Tripoli, G. J., 1992a: A nonhydrostatic model designed to simulate scale interaction. Mon. Wea. Rev.,120, 1342–1359.

  • ——, 1992b: An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteor. Atmos. Phys.,49, 229–254.

  • Webster, P. J., and R. Lucas, 1992: The TOGA Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc.,73, 1377–1416.

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci.,47, 242–264.

  • ——, J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci.,39, 395–411.

  • Woodley, W. L., 1970: Precipitation results from a pyrotechnic cumulus seeding experiment. J. Appl. Meteor.,9, 242–257.

  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci.,30, 611–627.

  • Yang, S., and E. A. Smith, 1999: Moisture budget analysis of TOGA COARE area using SSM/I–retrieved latent heating and large scale Q2 estimates. J. Atmos. Oceanic Technol.,16, 633–655.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 304 88 5
PDF Downloads 106 60 4

Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements

View More View Less
  • a JCET/University of Maryland, Baltimore County, Baltimore, Maryland
  • | b Mesoscale Atmospheric Processes Branch, NASA/Goddard Space Flight Center, Greenbelt, Maryland
  • | c Caelum Research Corporation, Rockville, Maryland
  • | d Mesoscale Atmospheric Processes Branch, NASA/Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

Abstract

A method for the remote sensing of three-dimensional latent heating distributions in precipitating tropical weather systems from satellite passive microwave observations is presented. In this method, cloud model simulated hydrometeor/latent heating vertical profiles that have radiative characteristics consistent with a given set of multispectral microwave radiometric observations are composited to create a best estimate of the observed profile. An estimate of the areal coverage of convective precipitation within the radiometer footprint is used as an additional constraint on the contributing model profiles. This constraint leads to more definitive retrieved profiles of precipitation and latent heating in synthetic data tests.

The remote sensing method is applied to Special Sensor Microwave/Imager (SSM/I) observations of tropical systems that occurred during the TOGA COARE Intensive Observing Period, and to observations of Hurricane Andrew (1992). Although instantaneous estimates of rain rates are high-biased with respect to coincident radar rain estimates, precipitation patterns are reasonably correlated with radar patterns, and composite rain rate and latent heating profiles show respectable agreement with estimates from forecast models and heat and moisture budget calculations. Uncertainties in the remote sensing estimates of precipitation/latent heating may be partly attributed to the relatively low spatial resolution of the SSM/I and a lack of microwave sensitivity to tenuous anvil cloud, for which upper-tropospheric latent heating rates may be significant. Estimated latent heating distributions in Hurricane Andrew exhibit an upper-level heating maximum that strengthens as the storm undergoes a period of intensification.

Corresponding author address: Dr. William S. Olson, NASA/GSFC, Code 912, Greenbelt, MD 20771.

olson@agnes.gsfc.nasa.gov

Abstract

A method for the remote sensing of three-dimensional latent heating distributions in precipitating tropical weather systems from satellite passive microwave observations is presented. In this method, cloud model simulated hydrometeor/latent heating vertical profiles that have radiative characteristics consistent with a given set of multispectral microwave radiometric observations are composited to create a best estimate of the observed profile. An estimate of the areal coverage of convective precipitation within the radiometer footprint is used as an additional constraint on the contributing model profiles. This constraint leads to more definitive retrieved profiles of precipitation and latent heating in synthetic data tests.

The remote sensing method is applied to Special Sensor Microwave/Imager (SSM/I) observations of tropical systems that occurred during the TOGA COARE Intensive Observing Period, and to observations of Hurricane Andrew (1992). Although instantaneous estimates of rain rates are high-biased with respect to coincident radar rain estimates, precipitation patterns are reasonably correlated with radar patterns, and composite rain rate and latent heating profiles show respectable agreement with estimates from forecast models and heat and moisture budget calculations. Uncertainties in the remote sensing estimates of precipitation/latent heating may be partly attributed to the relatively low spatial resolution of the SSM/I and a lack of microwave sensitivity to tenuous anvil cloud, for which upper-tropospheric latent heating rates may be significant. Estimated latent heating distributions in Hurricane Andrew exhibit an upper-level heating maximum that strengthens as the storm undergoes a period of intensification.

Corresponding author address: Dr. William S. Olson, NASA/GSFC, Code 912, Greenbelt, MD 20771.

olson@agnes.gsfc.nasa.gov

Save