• Bastiaanssen, W. G. M., 1995: Regionalization of surface flux densities and moisture indicators in composite terrain. Ph.D. thesis, DLO Winand Staring Centre, 278 pp. [Available from DLO Winand Staring Centre, Marijkeweg 11/22, P.O. Box 125, 6700 AC Wageningen, the Netherlands.].

  • Blümel, K., 1992: Modellierung der Wärmeflüsse am Erdboden mit Berücksichtigung von Vegetation. Meteorologische Abhandlungen, Neue Folge, Ser. A, Band 6, Heft 4, Verlag von Dietrich Reimer, 278 pp. [Available from Institut für Meteorologie der FU Berlin, Carl-Heinrich-Becker-Weg 6-10, D-12165 Berlin, Germany.].

  • ——, 1998: Estimation of sensible heat flux from surface temperature wave and one-time-of-day air temperature observation. Bound.-Layer Meteor.,86, 193–232.

  • Blyth, E. M., and A. J. Dolman, 1995: The roughness length for heat of sparse vegetation. J. Appl. Meteor.,34, 583–585.

  • Bolle, H.-J., 1997: Remote sensing and radiometric properties of the surface: Assessment of desertification from space. Final Rep. EV5V-CT93-0284, EFEDA Phase II, Group V, 208 pp. [Available from Institut für Meteorologie der FU Berlin, Carl-Heinrich-Becker-Weg 6-10, D-12165 Berlin, Germany.].

  • ——, and Coauthors, 1993: Ableitung von Landoberflächendaten aus Satellitenmessungen und ihre Validierung im Rahmen des Landoberflächen-Experiments LOTREX-HIBE. Abschlussbericht zum BMFT Fördervorhaben LOF 32/87-07KF 114-6, Inst. für Meteorologie, Freie Universität Berlin, 155 pp. [Available from Institut für Meteorologie der FU Berlin, Carl-Heinrich-Becker-Weg 6-10, D-12165 Berlin, Germany.].

  • Brutsaert, W., 1982: Evaporation into the Atmosphere. D. Reidel, 299 pp.

  • ——, and M. Sugita, 1996: Sensible heat transfer parameterization for surfaces with anisothermal dense vegetation. J. Atmos. Sci.,53, 209–216.

  • Byzova, N. L., and L. K. Kulizhnikova, 1996: Estimation of roughness length of land surface. Russ. Meteor. Hydrol.,5, 38–46.

  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 69 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307-3000.].

  • Garratt, J. R., and B. B. Hicks, 1973: Momentum, heat and vapour transfer to and from natural and artificial surfaces. Quart. J. Roy. Meteor. Soc.,99, 680–687.

  • Gates, D. M., 1980: Biophysical Ecology. Springer-Verlag, 610 pp.

  • Goudriaan, J., 1977: Crop micrometeorology: A simulation study. Ph.D. thesis, Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands, 249 pp.

  • Hiyama, T., M. Sugita, and K. Kotoda, 1996: Regional roughness parameters and momentum fluxes over a complex area. J. Appl. Meteor.,35, 2179–2190.

  • Hoppmann, U., and R. Roth, 1991: Experimentbericht zu den Feldmessungen HIBE 88 und 89. Bericht band B2, Inst. für Meteorologie und Klimatologie der Universität Hannover, Hannover, Germany, 285 pp. [Available from Institut für Meteorologie und Klimatologie der Universität Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany.].

  • Kohsiek, W., J. G. van der Vliet, and W. A. A. Monna, 1988: Crau 1987: The KNMI contribution. Tech. Rep. TR-110 (FM), 40 pp. [Available from Koninklijk Nederlands Meteorologisch Instituut, P.O. Box 201, 3730 AE De Bilt, Wilhelminalaan 10, the Netherlands.].

  • Kustas, W. P., B. J. Choudhury, M. S. Moran, R. J. Reginato, R. D. Jackson, L. W. Gay, and H. L. Weaver, 1989: Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric. For. Meteor.,44, 197–216.

  • Linder, W., and Coauthors, 1996: Intercomparison of surface schemes using EFEDA flux data. Note de Centre, Groupe Des Meteorologie a Moyenne Echelle, No. 39, Centre National de Recherches Meteorologiques, Meteo-France, 41 pp. [Available from Meteo-France, CNRM/GMME/MC2, 42 Ave. Coriolis, Toulouse Cedex 31057, France.].

  • McNaughton, K. G., and B. J. J. M. van den Hurk, 1995: A “Lagrangian” revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy. Bound.-Layer Meteor.,74, 261–288.

  • Owen, P. R., and W. R. Thomson, 1963: Heat transfer across rough surfaces. J. Fluid Mech.,15, 321–334.

  • Raupach, M. R., 1992: Drag and drag partition on rough surfaces. Bound.-Layer Meteor.,60, 375–395.

  • ——, 1994: Simplified expressions for vegetation roughness and zero-plane displacement height as functions of canopy height and area index. Bound.-Layer Meteor.,71, 211–216; Corrigendum, 76, 303–304.

  • Shaw, R. H., and A. R. Pereira, 1981: Aerodynamic roughness of vegetated surfaces. The effect of canopy structure and density. Extended Abstracts, 15th Conf. of Agriculture and Forest Meteorology and 5th Conf. on Biometeorology, Anaheim, CA, Amer. Meteor. Soc., 121–124.

  • ——, and ——, 1982: Aerodynamic roughness of a plant canopy: A numerical experiment. Agric. Meteor.,26, 51–65.

  • Sheppard, P. A., 1958: Transfer across the earth’s surface and through the air above. Quart. J. Roy. Meteor. Soc.,84, 205–224.

  • Stewart, J. B., W. P. Kustas, K. S. Humes, W. D. Nichols, M. S. Moran, and H. A. R. De Bruin, 1994: Sensible heat flux–radiometric surface temperature relationship for eight semiarid areas. J. Appl. Meteor.,33, 1110–1117.

  • Taconet, O., R. Bernard, and D. Vidal-Madjar, 1986: Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. J. Climate Appl. Meteor.,25, 284–307.

  • Thom, A. S., 1972: Momentum, mass and heat exchange of vegetation. Quart. J. Roy. Meteor. Soc.,98, 124–134.

  • Verhoef, A., H. A. R. de Bruin, and B. J. J. M. van den Hurk, 1997:Some practical notes on the parameter kB−1 for sparse vegetation. J. Appl. Meteor.,36, 560–572.

  • Wood, N., and P. Mason, 1991: The influence of static stability on the effective roughness length for momentum and heat transfer. Quart. J. Roy. Meteor. Soc.,117, 1025–1056.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 981 461 37
PDF Downloads 696 373 24

A Simple Formula for Estimation of the Roughness Length for Heat Transfer over Partly Vegetated Surfaces

View More View Less
  • 1 Institut für Meteorologie, Freien Universität Berlin, Berlin, Germany
Restricted access

Abstract

A simple formula for computation of the effective roughness length z0Heff for heat transfer or rather for the parameter kB−1eff [=ln(z0Meff/z0Heff) with z0Meff = roughness length for momentum], which are needed in single-source models for evaluating sensible heat fluxes, is derived. This formula allows the calculation of z0Heff over (bluff–rough) bare soil, dense vegetation, and for surfaces that are only partly covered by vegetation. In addition to the wind speed only a minimum of information about the considered surface must be known as input information: the horizontal fraction (covering) of vegetation σf and the mean vegetation height. The reliability of the formula can be improved further if there are proper estimates for the leaf stem area index and for the characteristic leaf size Df. The influence of stand geometry can be taken into consideration by providing the effective roughness length for momentum z0Meff (e.g., from measurements).

First, a quite simple triple-source transfer model is developed that allows the computation of the total sensible heat flux and of the total momentum flux without knowledge of z0Heff. After definition of effective roughness lengths for momentum z0Meff and for heat z0Heff by a single-source model (bulk transfer equations), these quantities as well as kB−1eff can be derived using these simulated fluxes. Selected simulations for different scenarios show the dependence of kB−1eff on the fraction of vegetation and other parameters.

The desired simple estimation formula for kB−1eff is found by adjustment to the above-mentioned simulations and by theoretical determination of the boundary values (bare soil and complete vegetation covering).

This formula is verified successfully by means of data sampled at different field campaigns over various surface types and is compared to various semiempirical parameterizations of kB−1eff, which have been presented in the literature.

Corresponding author address: Klaus Blümel, Institut für Meteorologie der Freien Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany.

bluemel@zedat.fu-berlin.de

Abstract

A simple formula for computation of the effective roughness length z0Heff for heat transfer or rather for the parameter kB−1eff [=ln(z0Meff/z0Heff) with z0Meff = roughness length for momentum], which are needed in single-source models for evaluating sensible heat fluxes, is derived. This formula allows the calculation of z0Heff over (bluff–rough) bare soil, dense vegetation, and for surfaces that are only partly covered by vegetation. In addition to the wind speed only a minimum of information about the considered surface must be known as input information: the horizontal fraction (covering) of vegetation σf and the mean vegetation height. The reliability of the formula can be improved further if there are proper estimates for the leaf stem area index and for the characteristic leaf size Df. The influence of stand geometry can be taken into consideration by providing the effective roughness length for momentum z0Meff (e.g., from measurements).

First, a quite simple triple-source transfer model is developed that allows the computation of the total sensible heat flux and of the total momentum flux without knowledge of z0Heff. After definition of effective roughness lengths for momentum z0Meff and for heat z0Heff by a single-source model (bulk transfer equations), these quantities as well as kB−1eff can be derived using these simulated fluxes. Selected simulations for different scenarios show the dependence of kB−1eff on the fraction of vegetation and other parameters.

The desired simple estimation formula for kB−1eff is found by adjustment to the above-mentioned simulations and by theoretical determination of the boundary values (bare soil and complete vegetation covering).

This formula is verified successfully by means of data sampled at different field campaigns over various surface types and is compared to various semiempirical parameterizations of kB−1eff, which have been presented in the literature.

Corresponding author address: Klaus Blümel, Institut für Meteorologie der Freien Universität Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany.

bluemel@zedat.fu-berlin.de

Save