• Builtjes, P. J. H., P. J. Esser, and M. G. M. Roemer, 1997: An analysis of regional differences in tropospheric ozone over Europe. Proceedings, 22d NATO/CCMS ITM on Air Pollution Modelling and its Application, Vol. 22, Plenum Press, 157–164.

  • Calbó, J., 1993: Contribució al desenvolupament d’un model meteorológic de mesoscala (Development of a mesoscale meteorological prognostic model). Ph.D. thesis, Universitat Politècnica de Catalunya, 337 pp. [Available from Department de Física, Universitat de Girona, Campus Motilivi, 17071 Girona, Spain.].

  • Ford, E. D., 1976: The canopy of a scots pine forest: Description of a surface of complex roughness. Agric. Meteor.,17, 9–32.

  • Garand, L., 1988: Automated recognition of oceanic cloud patterns. Part I: Methodology and application to cloud climatology. J. Climate,1, 20–39.

  • Hernández, J. F., L. Cremades, and J. M. Baldasano, 1995: Dispersion modelling of a tall stack plume in the Spanish Mediterranean coast by a particle model. Atmos. Environ.,29, 1331–1341.

  • Lyons, W. A., R. A. Pielke, W. R. Cotton, M. Uliasz, C. J. Tremback, and R. L. Walko, 1993: The applications of new technologies to modeling mesoscale dispersion in coastal zones and complex terrain. Int. Symp. in Air Pollution, P. Zanetti et al., Eds., Computational Mechanics Publications and Elsevier Applied Science, 35–85.

  • Martin, M., J. Plaza, M. D. Andrés, J. C. Bezares, and M. M. Millán, 1991: Comparative study of seasonal air pollutant behavior in a Mediterranean coastal site: Castellón (Spain). Atmos. Environ.,25A, 1523–1535.

  • McQueen, J. T., R. D. Draxler, and G. D. Rolph, 1995: Influence of grid size and terrain resolution on wind field predictions from an operational mesoscale model. J. Appl. Meteor.,34, 2166–2181.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys.,20, 851–875.

  • Millán, M. M., B. Artiñano, L. A. Alonso, M. Castro, R. Fernandez-Patier, and J. Goberna, 1992: Meso-meteorological cycles of air pollution in the Iberian Peninsula (MECAPIP). Air Pollution Research Rep. 44, EUR 14343, Commission of the European Communities, 291 pp. [Available from CEC-DG XII/E-1, Rue de la Loi, 200 Brussels, Belgium.].

  • ——, R. Salvador, E. Mantilla, and B. Artiñano, 1996: Meteorology and photochemical air pollution in southern Europe: Experimental results from EC research projects. Atmos. Environ.,30, 1909–1924.

  • ——, ——, ——, and G. Kallos, 1997: Photooxidant dynamics in the Mediterranean basin in summer: Results from European research projects. J. Geophys. Res.,102 (D7), 8811–8823.

  • ——, M. J. Estrela, and C. Badenas, 1998: Meteorological processes relevant to forest fire dynamics on the Spanish Mediterranean coast. J. Appl. Meteor.,37, 83–100.

  • ——, E. Mantilla, R. Salvador, M. J. Sanz, D. Carratalá, L. Alonso, G. Gangoiti, and M. Navazo, 1999: Ozone cycles in the Western Mediterranean Basin: Interpretation of monitoring data in complex coastal terrain. J. Appl. Meteor., in press.

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 611 pp.

  • ——, and E. Kennedy, 1980: Mesoscale terrain features. Rep. UVA-ENV SCI-MESO-1980-1, University of Virginia, 21 pp. [Available from R. Pielke, Dept. Atmos. Sci., Colorado State University, Fort Collins, CO 80523.].

  • ——, and Coauthors, 1992: A comprehensive meteorological modelling system—RAMS. Meteor. Atmos. Phys.,49, 69–91.

  • Porch, W. M., 1982: Implication of spatial averaging in complex-terrain wind studies. J. Appl. Meteor.,21, 1258–1265.

  • Poulos, G. S., and R. A. Pielke, 1994: A numerical analysis of Los Angeles Basin pollution transport to the Grand Canyon under stably stratified, southwest flow conditions. Atmos. Environ.,28, 3329–3357.

  • Press, W. H., B. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1988: Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, 702 pp.

  • Rayner, J. N., 1972: The application of harmonic and spectral analysis to the study of terrain. Spatial Analysis in Geomorphology, R. J. Chorley, Ed., Methuen and Co., 283–302.

  • Salvador, R., E. Mantilla, M. J. Salazar, and M. Millán, 1994: Plume dispersion modelling during a sea-breeze event. Air Pollution II, J. M. Baldasano et al., Eds., Vol. 2, Computational Mechanics Publications, 69–80.

  • Seufert, G., Ed., 1997: BEMA: A European Commission project on biogenic emissions in the Mediterranean area. Atmos. Environ.,31, SI 1–SI 255.

  • Steyn, D. G., and K. W. Ayotte, 1985: Application of two-dimensional terrain height spectra to mesoscale modeling. J. Atmos. Sci.,42, 2884–2887.

  • Stull, R. B., 1995: Meteorology Today for Scientists and Engineers. West Publishing Company, 385 pp.

  • Troen, I., and E. L. Petersen, 1989: European Wind Atlas. Riso National Laboratory, Roskilde, 656 pp.

  • Uliasz, M., R. A. Stocker, and R. A. Pielke, 1996: Regional modeling of air pollution transport in the southwestern United States. Environmental Modeling, P. Zannetti, Ed., Vol. 3, Computational Mechanics Publications, 145–182.

  • Ulrickson, B. L., and C. F. Mass, 1990: Numerical investigation of mesoscale circulations over the Los Angeles Basin. Part II: Synoptic influences and pollutant transport. Mon. Wea. Rev.,118, 2162–2184.

  • Walmsley, J. L., J. R. Salmon, and P. A. Taylor, 1982: On the application of a model of boundary-layer flow over low hills to real terrain. Bound-Layer Meteor.,23, 17–46.

  • Young, G. S., and R. A. Pielke, 1983: Application of terrain height variance spectra to mesoscale modeling. J. Atmos. Sci.,40, 2555–2560.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 101 7
PDF Downloads 111 74 3

Horizontal Grid Size Selection and its Influence on Mesoscale Model Simulations

View More View Less
  • a CEAM (Centro de Estudios Ambientales del Mediterraneo), Paterna, Valencia, Spain
  • | b Departament d’Enginyeria Industrial, Universitat de Girona, Girona, Spain
  • | c CEAM (Centro de Estudios Ambientales del Mediterraneo), Paterna, Valencia, Spain
Restricted access

Abstract

The use of two-dimensional spectral analysis applied to terrain heights in order to determine characteristic terrain spatial scales and its subsequent use for the objective definition of an adequate grid size required to resolve terrain forcing are presented in this paper. In order to illustrate the influence of grid size, atmospheric flow in a complex terrain area of the Spanish east coast is simulated by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical model using different horizontal grid resolutions. In this area, a grid size of 2 km is required to account for 95% of terrain variance. Comparison among results of the different simulations shows that, although the main wind behavior does not change dramatically, some small-scale features appear when using a resolution of 2 km or finer. Horizontal flow pattern differences are significant both in the nighttime, when terrain forcing is more relevant, and in the daytime, when thermal forcing is dominant. Vertical structures also are investigated, and results show that vertical advection is influenced highly by the horizontal grid size during the daytime period. The turbulent kinetic energy and potential temperature vertical cross sections show substantial differences in the structure of the planetary boundary layer for each model configuration.

Corresponding author address: Dr. Rosa Salvador, CEAM, Parque Tecnologico, Calle 4, Sector Oeste, E-46980 Valencia, Paterna, Spain.

salvador@ceam.es

Abstract

The use of two-dimensional spectral analysis applied to terrain heights in order to determine characteristic terrain spatial scales and its subsequent use for the objective definition of an adequate grid size required to resolve terrain forcing are presented in this paper. In order to illustrate the influence of grid size, atmospheric flow in a complex terrain area of the Spanish east coast is simulated by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical model using different horizontal grid resolutions. In this area, a grid size of 2 km is required to account for 95% of terrain variance. Comparison among results of the different simulations shows that, although the main wind behavior does not change dramatically, some small-scale features appear when using a resolution of 2 km or finer. Horizontal flow pattern differences are significant both in the nighttime, when terrain forcing is more relevant, and in the daytime, when thermal forcing is dominant. Vertical structures also are investigated, and results show that vertical advection is influenced highly by the horizontal grid size during the daytime period. The turbulent kinetic energy and potential temperature vertical cross sections show substantial differences in the structure of the planetary boundary layer for each model configuration.

Corresponding author address: Dr. Rosa Salvador, CEAM, Parque Tecnologico, Calle 4, Sector Oeste, E-46980 Valencia, Paterna, Spain.

salvador@ceam.es

Save