Cirrus Cloud Properties Derived from POLDER-1/ADEOS Polarized Radiances: First Validation Using a Ground-Based Lidar Network

Hélène Chepfer Laboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France

Search for other papers by Hélène Chepfer in
Current site
Google Scholar
PubMed
Close
,
Philippe Goloub Laboratoire d’Optique Atmosphérique, Université Lille 1, Villeneuve d’Ascq, France

Search for other papers by Philippe Goloub in
Current site
Google Scholar
PubMed
Close
,
James Spinhirne NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by James Spinhirne in
Current site
Google Scholar
PubMed
Close
,
Pierre H. Flamant Laboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France

Search for other papers by Pierre H. Flamant in
Current site
Google Scholar
PubMed
Close
,
Mario Lavorato CEILAP, Villa Martelli, Argentina

Search for other papers by Mario Lavorato in
Current site
Google Scholar
PubMed
Close
,
Laurent Sauvage Laboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France

Search for other papers by Laurent Sauvage in
Current site
Google Scholar
PubMed
Close
,
Gérard Brogniez Laboratoire d’Optique Atmosphérique, Université Lille 1, Villeneuve d’Ascq, France

Search for other papers by Gérard Brogniez in
Current site
Google Scholar
PubMed
Close
, and
Jacques Pelon Service d’Aéronomie, Université Paris 6, Paris, France

Search for other papers by Jacques Pelon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Bidirectional polarized reflectances measured with the POLDER-1 instrument on board Advanced Earth Observing Satellite-1 have been used to infer cloud altitude and thermodynamical phase (ice/liquid) at a global scale. This paper presents a validation of these properties for cirrus clouds. The validation presented here is based on comparisons between POLDER-1 retrievals and measurements collected with a ground-based lidar network. The scale differences between POLDER measurements and lidar data are treated by selecting homogeneous and stable cloud layers.

These comparisons show that the cloud altitude retrieval with POLDER is valid for optically thick cloud, and nonvalid for semitransparent and thin cirrus clouds. The limitations of the cloud altitude retrieval method are analyzed by using both comparisons between POLDER and lidar and simulations of the bidirectional polarized reflectances performed with a radiative transfer code to assess a threshold of validity of the POLDER retrieval method. The comparisons of lidar and POLDER data show that the cloud thermodynamical phase (ice/liquid) retrieval is satisfactory, and examples of cloud thermodynamical phase retrieval are presented as a function of cloud temperatures.

Corresponding author address: Dr. Hélène Chepfer, Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France.

Abstract

Bidirectional polarized reflectances measured with the POLDER-1 instrument on board Advanced Earth Observing Satellite-1 have been used to infer cloud altitude and thermodynamical phase (ice/liquid) at a global scale. This paper presents a validation of these properties for cirrus clouds. The validation presented here is based on comparisons between POLDER-1 retrievals and measurements collected with a ground-based lidar network. The scale differences between POLDER measurements and lidar data are treated by selecting homogeneous and stable cloud layers.

These comparisons show that the cloud altitude retrieval with POLDER is valid for optically thick cloud, and nonvalid for semitransparent and thin cirrus clouds. The limitations of the cloud altitude retrieval method are analyzed by using both comparisons between POLDER and lidar and simulations of the bidirectional polarized reflectances performed with a radiative transfer code to assess a threshold of validity of the POLDER retrieval method. The comparisons of lidar and POLDER data show that the cloud thermodynamical phase (ice/liquid) retrieval is satisfactory, and examples of cloud thermodynamical phase retrieval are presented as a function of cloud temperatures.

Corresponding author address: Dr. Hélène Chepfer, Laboratoire de Météorologie Dynamique, École Polytechnique, 91128 Palaiseau CEDEX, France.

Save
  • Brogniez, G., 1988: Light scattering by finite hexagonal crystals arbitrarily oriented in space. Proc. Int. Radiation Symp., Lille, France, International Association of Meteorology and Atmospheric Physics, 64–67.

  • Buriez, J. C., and Coauthors, 1997: Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote. Sens.,18, 2785–2813.

  • Chepfer, H., 1997: Etude théorique et expérimentale des propriétés optiques et radiatives des cirrus. Ph.D. dissertation, Université de Lille-1, 197 pp.

  • Chepfer, H., G. Brogniez, and Y. Fouquart, 1998: Cirrus cloud microphysical properties deduced from POLDER observations. J. Quant. Spectros. Radiat. Transfer,30, 375–390.

  • Chepfer, H., G. Brogniez, L. Sauvage, P. H. Flamant, V. Trouillet, and J. Pelon, 1999: Remote sensing of cirrus radiative parameters during EUCREX’94. Case study of 17 April 1994. Part II: Microphysical models. Mon. Wea. Rev.,127, 504–519.

  • de Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1986: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys.,183, 371–391.

  • Deschamps, P.-Y., F.-M. Bréon, M. Leroy, A. Podaire, A. Brickaud, J.-C. Buriez, and G. Sèze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens.,32, 598–615.

  • Fernald, F. G., B. M. Herman, and J. A. Reagan, 1972: Determination of aerosol height distributions by lidar. J. Appl. Meteor.,11, 482–489.

  • Goloub, P., J. L. Deuzé, M. Herman, and Y. Fouquart, 1994: Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Trans. Geosci. Remote Sens.,32, 78–88.

  • Hansen, J. E., 1971: Multiple scattering of polarized light in planetary atmospheres. Part I. The doubling method. J. Atmos. Sci.,28, 120–125.

  • Hansen, J. E., A. Lacis, D. Rind, G. Russel, P. Stone, I. Fung, R. Ruedy, and J. Lerner, 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., No. 29, Amer. Geophys. Union, 130–163.

  • Herman, M., J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, and D. Tanré, 1997: Remote sensing of aerosols over land surfaces, including polarization measurements: Application to some airborne POLDER measurements. J. Geophys. Res.,102, 17 039–17 049.

  • Leroy, M., and Coauthors, 1997: Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER. J. Geophys. Res.,102, 17 023–17 037.

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev.,114, 1167–1199.

  • Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystals. J. Atmos. Sci.,53, 2813–1825.

  • Mishchenko, M. I., and L. D. Travis, 1997: Satellite retrieval aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res.,102, 16 989–17 013.

  • Nicolas, F., L. R. Bissonnette, and P. H. Flamant, 1997: Lidar effective multiple-scattering coefficients in cirrus clouds. Appl. Opt.,36, 3458–3468.

  • Sassen, K., 1991: The polarization lidar technique for cloud research:A review and current assessment. Bull. Amer. Meteor. Soc.,72, 1848–1866.

  • Sassen, K., and K. N. Liou, 1979a: Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: Angular scattering patterns. J. Atmos. Sci.,36, 838–851.

  • Sassen, K., and K. N. Liou, 1979b: Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: Angular depolarizing and multiple-scattering behavior. J. Atmos. Sci.,36, 852–861.

  • Sassen, K., and Coauthors, 1995: The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: Possible influences of volcanic aerosols. J. Atmos. Sci.,52, 97–123.

  • Sassen, K., J. Campbell, and J. F. Barnett, 1998: Midlatitude cirrus clouds:A climatology from 10-year polarization lidar observation program at FARS. Proc. 19th Int. Laser Radar Conf., Annapolis, MD, NASA, 45–46.

  • Sauvage, L., H. Chepfer, V. Trouillet, P. H. Flamant, G. Brogniez, J. Pelon, and F. Albers, 1999: Remote sensing of cirrus radiative parameters during EUCREX’94. Case study of 17 April 1994. Part I: Observations. Mon. Wea. Rev.,127, 486–503.

  • Spinhirne, J. D., A. R. Rall, and V. S. Scott, 1995: Compact eye-safe lidar systems. Rev. Laser Eng.,23, 112–118.

  • van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover Publications, 470 pp.

  • Vesperini, M., F. M. Bréon, and D. Tanré, 1999: Atmospheric water vapor content from spaceborne POLDER measurements. IEEE Trans. Geosci. Remote Sens.,37, 1613–1619.

  • Young, S., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt.,34, 7019–7031.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 606 86 2
PDF Downloads 83 23 1