Simulation of Coherent Doppler Lidar Performance for Space-Based Platforms

Rod Frehlich Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Rod Frehlich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of coherent Doppler lidar velocity estimates for a space-based platform are produced using computer simulations of raw data and statistical descriptions of the resulting velocity estimates. The random spatial variability of the wind field and aerosol backscatter is included as well as the improvement using coprocessing of multiple shots for a fixed lidar beam geometry. Performance of velocity estimates is defined as the rms error of the good radial velocity estimates and the fraction of bad estimates in low signal conditions. For a wide range of conditions, performance is effectively described by a few basic parameters that are a function of the atmospheric conditions and the lidar design. The threshold signal level for acceptable velocity measurements scales as N−1/2, where N is the number of coprocessed lidar shots. For a 100-km satellite track and N = 100 lidar shots, the rms error is typically less than 0.4 m s−1 for high signal levels.

Corresponding author address: Dr. Rod Frehlich, CIRES, University of Colorado, Boulder, Colorado 80309-1149.

Abstract

The performance of coherent Doppler lidar velocity estimates for a space-based platform are produced using computer simulations of raw data and statistical descriptions of the resulting velocity estimates. The random spatial variability of the wind field and aerosol backscatter is included as well as the improvement using coprocessing of multiple shots for a fixed lidar beam geometry. Performance of velocity estimates is defined as the rms error of the good radial velocity estimates and the fraction of bad estimates in low signal conditions. For a wide range of conditions, performance is effectively described by a few basic parameters that are a function of the atmospheric conditions and the lidar design. The threshold signal level for acceptable velocity measurements scales as N−1/2, where N is the number of coprocessed lidar shots. For a 100-km satellite track and N = 100 lidar shots, the rms error is typically less than 0.4 m s−1 for high signal levels.

Corresponding author address: Dr. Rod Frehlich, CIRES, University of Colorado, Boulder, Colorado 80309-1149.

Save
  • Anderson, J. R., 1991: High performance velocity estimators for coherent laser radars. Sixth Topical Meeting on Coherent Laser Radar: Technology and Applications, Aspen, CO, OSA, 216–218.

  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan,75, 111–130.

  • Baker, W. E, and Coauthors, 1995: Lidar-measured winds from space:An essential component for weather and climate prediction. Bull. Amer. Meteor. Soc.,76, 869–888.

  • Belan, B. D., A. I. Grishin, G. O. Zadde, and G. G. Matviyenko, 1987: Correlation functions and spectral densities of aerosol concentration and of fluctuations in the aerosol backscatter coefficient in the lower atmosphere. Atmos. Oceanic Phys.,23, 301–305.

  • Bowdle, D. A., 1997: Aerosol backscatter spatial structure: Preliminary results. University of Alabama in Huntsville Rep. to NASA Dryden Flight Research Center on Contract Number NCC8-22, 41 pp.

  • Emmitt, G. D., 1998: SPARCLE: An approved shuttle mission to demonstrate tropospheric wind sensing using a coherent 2-μm Doppler lidar. Earth Observing Systems III, Proceedings Volume 3439, W. L. Barnes, Ed., SPIE—Int. Soc. for Optical Engineering, 31–38.

  • Frehlich, R. G., 1993: Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Appl. Opt.,33, 6472–6481.

  • Frehlich, R. G., 1996: Simulation of coherent Doppler lidar performance in the weak signal regime. J. Atmos. Oceanic Technol.,13, 646–658.

  • Frehlich, R. G., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol.,14, 54–75.

  • Frehlich, R. G., and M. J. Yadlowsky, 1994: Performance of mean-frequency estimators for Doppler radar and lidar. J. Atmos. Oceanic Technol.,11, 1217–1230. Corrigenda, J. Atmos. Oceanic Technol.,12, 445–446.

  • Frehlich, R. G., S. Hannon, and S. Henderson, 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol.,11, 1517–1528.

  • Frehlich, R. G., S. Hannon, and S. Henderson, 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt.,36, 3491–3499.

  • Frehlich, R. G., S. Hannon, and S. Henderson, 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor.,86, 233–256.

  • Gentry, B. M., and C. L. Korb, 1994: Edge technique for high-accuracy Doppler velocimetry. Appl. Opt.,33, 5770–5777.

  • Henderson, P. J., M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sensing,31, 4–15.

  • Henderson, S. W., C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers. Opt. Lett.,16, 773–775.

  • Huffaker, M. R., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE,84, 181–204.

  • Huffaker, M. R., T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall Jr., R. A. Richter, and R. J. Keeler, 1984: Feasibility studies for a global wind measuring satellite system (Wind-sat): Analysis of simulated performance. Appl. Opt.,23, 2523–2536.

  • Johnson, G. E., 1994: Constructions of particular random processes. Proc. IEEE,82, 270–285.

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Cote, and Y. Izumi, 1976. Turbulence structure in the convective boundary layer. J. Atmos. Sci.,33, 2152–2169.

  • Kavaya, M. J., and G. D. Emmitt, 1998: The Space Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission. Laser Radar Technology and Applications III, Proceedings Volume 3380, G. W. Kamerman, Ed., SPIE—Int. Soc. for Optical Engineering, 2–11.

  • Kavaya, M. J., S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, 1989: Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett.,14, 776–778.

  • Korb, C. L., B. M. Gentry, and C. Y. Weng, 1992: Edge technique: Theory and application to the lidar measurement of atmospheric wind. Appl. Opt.,31, 4202–4212.

  • Korb, C. L., B. M. Gentry, S. X. Li, and C. Flesia, 1998: Theory of the double-edge technique for Doppler lidar wind measurements. Appl. Opt.,37, 3097–3104.

  • Leeb, W. R., P. J. Winzer, and K. H. Kudielka, 1998: Aperture dependence of the mixing efficiency, the signal-to-noise ratio, and the speckle number in coherent lidar receivers. Appl. Opt.,37, 3143–3148.

  • Lenschow, D. H., and L. Kristensen, 1988: Applications of dual aircraft formation flights. J. Atmos. Oceanic Technol.,5, 715–726.

  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci.,37, 1313–1326.

  • Marple, S. L., Jr., 1987: Digital Spectral Analysis with Applications. Prentice-Hall, Inc., 492 pp.

  • McGill, M. J., and W. R. Skinner, 1997: Multiple Fabry-Perot interferometers in an incoherent Doppler lidar. Opt. Eng.,36, 139–145.

  • McGill, M. J., W. R. Skinner, and T. D. Irang, 1997a: Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar. Opt. Soc. Amer.,36, 1253–1268.

  • McGill, M. J., W. R. Skinner, and T. D. Irang, 1997b: Validation of wind profiles measured with incoherent Doppler lidar. Appl. Opt.,36, 1928–1939.

  • McKay, J. A., 1998a: Modeling of direct detection Doppler wind lidar. I. The edge technique. Appl. Opt.,37, 6480–6486.

  • McKay, J. A., 1998b: Modeling of direct detection Doppler wind lidar. II. The fringe imaging technique. Appl. Opt.,37, 6487–6493.

  • Menzies, R. T., 1986: Doppler lidar atmospheric wind sensors: A comparative performance evaluation for global measurement applications from earth orbit. Appl. Opt.,25, 2546–2553.

  • Menzies, R. T., and R. M. Hardesty, 1989: Coherent Doppler lidar for measurements of wind fields. Proc. IEEE,77, 449–462.

  • Monin, A. S., and A. M. Yaglom, 1975: Statistical Fluid Mechanics:Mechanics of Turbulence. Vol. 2, The MIT Press, 874 pp.

  • Osipenko, F. P., A. P. Chaykovskiy, and V. N Shcherbakov, 1989: Microstructure variations and statistical characteristics of the backscatter index of the aerosol in the atmospheric boundary layer as indicated by multifrequency soundings. Atmos. Oceanic Phys.,25, 528–532.

  • Rohaly, G. D., and T. N. Krishnamurti, 1993: An observing system simulation experiment for the laser atmospheric wind sounder (LAWS). J. Appl. Meteor.,32, 1452–1471.

  • Rothermel, J., D. A. Bowdle, J. M. Vaughan, and M. J. Post, 1989:Evidence of a tropospheric aerosol backscatter background mode. Appl. Opt.,28, 1040–1042.

  • Rothermel, J., D. A. Bowdle, and V. Srivastava, 1996: Mid-tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1μm wavelength. Geophys. Res. Lett.,23, 281–284.

  • Rye, B. J., 1990: Spectral correlation of atmospheric lidar returns with range-dependent backscatter. J. Opt. Soc. Amer. A.,7, 2199–2207.

  • Rye, B. J., and R. M. Hardesty, 1993a: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans. Geosci. Remote Sensing,31, 16–27.

  • Rye, B. J., and R. M. Hardesty, 1993b: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation. IEEE Trans. Geosci. Remote Sensing,31, 28–35.

  • Salamitou, P., A. Dabas, and P. H. Flamant, 1995: Simulation in the time domain for heterodyne coherent laser radar. Appl. Opt.,34, 499–506.

  • Shinozuka, M., and C. M. Jan, 1972: Digital simulation of random processes and its applications. J. Sound Vibrations,25, 111–128.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 401 88 5
PDF Downloads 231 46 3