Adequacy of Using a 1/3-Degree Special Sensor Microwave Imager Dataset to Estimate Climate-Scale Rainfall

Qihang Li Caelum Research Corporation, Silver Spring, Maryland

Search for other papers by Qihang Li in
Current site
Google Scholar
PubMed
Close
,
Ralph Ferraro National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Research and Applications, Camp Springs, Maryland

Search for other papers by Ralph Ferraro in
Current site
Google Scholar
PubMed
Close
, and
Norman Grody National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Research and Applications, Camp Springs, Maryland

Search for other papers by Norman Grody in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Until recently, monthly rainfall products using the National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Research and Applications Special Sensor Microwave Imager (SSM/I) rainfall algorithm have been generated on a global 2.5° × 2.5° grid. The rainfall estimates are based on a subsampled set of the full-resolution SSM/I data, with a resulting spatial density of about one-third of what is possible at SSM/I’s highest spatial resolution. The reduction in the spatial resolution was introduced in 1992 as a compromise dictated by data processing capabilities. Currently, daily SSM/I data processing at full resolution has been established and is being operated in parallel with the subsampled set. Reprocessing of the entire SSM/I time series based on the full-resolution data is plausible but requires the reprocessing of over 10 yr of retrospective data. Because the Global Precipitation Climatology Project is considering the generation of a daily 1° × 1° rainfall product, it is important that the effects of using the reduced spatial resolution be reexamined.

In this study, error due to using the reduced-resolution versus the full-resolution SSM/I data in the gridded products at 2.5° and 1° grid sizes is examined. The estimates are based on statistics from radar-derived rain data and from SSM/I data taken over the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) radar site. SSM/I data at full resolution were assumed to provide rain estimates with 12.5-km spacing. Subsampling with spacings of 25, 37.5 (which corresponds to the present situation of ⅓° latitude–longitude spatial resolution), and 50 km were considered. For the instantaneous 2.5° × 2.5° product, the error due to subsampling, expressed as a percentage of the gridbox mean, was estimated using radar-derived data and was 6%, 10%, and 15% at these successively poorer sampling densities. For monthly averaged products on a 2.5° × 2.5° grid, it was substantially lower: 3%, 4%, and 7%, respectively. Subsampling errors for monthly averages on a 1° × 1° grid were 8%, 16%, and 23%, respectively. Estimates based on SSM/I data at full resolution gave errors that were somewhat larger than those from radar-based estimates. It was concluded that a rain product of monthly averages on a 1° × 1° grid must use the full-resolution SSM/I data. More work is needed to determine how applicable these estimates are to other areas of the globe with substantially different rain statistics.

Corresponding author address: Qihang Li, NOAA/NESDIS/ORA, 5200 Auth Rd., No. 703, Camp Springs, MD 20746.

Abstract

Until recently, monthly rainfall products using the National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Research and Applications Special Sensor Microwave Imager (SSM/I) rainfall algorithm have been generated on a global 2.5° × 2.5° grid. The rainfall estimates are based on a subsampled set of the full-resolution SSM/I data, with a resulting spatial density of about one-third of what is possible at SSM/I’s highest spatial resolution. The reduction in the spatial resolution was introduced in 1992 as a compromise dictated by data processing capabilities. Currently, daily SSM/I data processing at full resolution has been established and is being operated in parallel with the subsampled set. Reprocessing of the entire SSM/I time series based on the full-resolution data is plausible but requires the reprocessing of over 10 yr of retrospective data. Because the Global Precipitation Climatology Project is considering the generation of a daily 1° × 1° rainfall product, it is important that the effects of using the reduced spatial resolution be reexamined.

In this study, error due to using the reduced-resolution versus the full-resolution SSM/I data in the gridded products at 2.5° and 1° grid sizes is examined. The estimates are based on statistics from radar-derived rain data and from SSM/I data taken over the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) radar site. SSM/I data at full resolution were assumed to provide rain estimates with 12.5-km spacing. Subsampling with spacings of 25, 37.5 (which corresponds to the present situation of ⅓° latitude–longitude spatial resolution), and 50 km were considered. For the instantaneous 2.5° × 2.5° product, the error due to subsampling, expressed as a percentage of the gridbox mean, was estimated using radar-derived data and was 6%, 10%, and 15% at these successively poorer sampling densities. For monthly averaged products on a 2.5° × 2.5° grid, it was substantially lower: 3%, 4%, and 7%, respectively. Subsampling errors for monthly averages on a 1° × 1° grid were 8%, 16%, and 23%, respectively. Estimates based on SSM/I data at full resolution gave errors that were somewhat larger than those from radar-based estimates. It was concluded that a rain product of monthly averages on a 1° × 1° grid must use the full-resolution SSM/I data. More work is needed to determine how applicable these estimates are to other areas of the globe with substantially different rain statistics.

Corresponding author address: Qihang Li, NOAA/NESDIS/ORA, 5200 Auth Rd., No. 703, Camp Springs, MD 20746.

Save
  • Bras, R. L., and I. Rodriguez-Iturbe, 1985: Random Function and Hydrology. Addison-Wesley, 559 pp.

  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res.,102, 16 715–16 735.

  • Ferraro, R. R., N. C. Grody, and G. F. Marks, 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I. Remote Sens. Rev.,11, 195–209.

  • Ferraro, R. R., F. Weng, N. C. Grody, and A. Basist, 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc.,77, 891–905.

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc.,78, 5–20.

  • Li, Q., R. Ferraro, and N. Grody, 1998: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS SSM/I algorithm. Part 1: Tropical oceanic rainfall. J. Geophys. Res.,103, 11 419–11 427.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 231 97
PDF Downloads 22 13 1