Nitric Acid–Sea Salt Reactions: Implications for Nitrogen Deposition to Water Surfaces

S. C. Pryor Atmospheric Science Program, Department of Geography, Indiana University, Bloomington, Indiana

Search for other papers by S. C. Pryor in
Current site
Google Scholar
PubMed
Close
and
L. L. Sørensen Department of Wind Energy and Atmospheric Physics, Risø National Laboratory, Roskilde, Denmark

Search for other papers by L. L. Sørensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many previous studies have indicated the importance of nitric acid (HNO3) reactions on sea salt particles for flux divergence of HNO3 in the marine surface layer. The potential importance of this reaction in determining the spatial and temporal patterns of nitrogen dry deposition to marine ecosystems is investigated using models of sea spray generation and particle- and gas-phase dry deposition. Under horizontally homogeneous conditions with near-neutral stability and for wind speeds between 3.5 and 10 m s−1, transfer of HNO3 to the particle phase to form sodium nitrate may decrease the deposition velocity of nitrogen by over 50%, leading to greater horizontal transport prior to deposition to the sea surface. Conversely, for wind speeds above 10 m s−1, transfer of nitrogen to the particle phase would increase the deposition rate and hence decrease horizontal transport prior to surface removal.

Corresponding author address: S. C. Pryor, Atmospheric Science Program, Dept. of Geography, Indiana University, Bloomington, IN 47405.

spryor@indiana.edu

Abstract

Many previous studies have indicated the importance of nitric acid (HNO3) reactions on sea salt particles for flux divergence of HNO3 in the marine surface layer. The potential importance of this reaction in determining the spatial and temporal patterns of nitrogen dry deposition to marine ecosystems is investigated using models of sea spray generation and particle- and gas-phase dry deposition. Under horizontally homogeneous conditions with near-neutral stability and for wind speeds between 3.5 and 10 m s−1, transfer of HNO3 to the particle phase to form sodium nitrate may decrease the deposition velocity of nitrogen by over 50%, leading to greater horizontal transport prior to deposition to the sea surface. Conversely, for wind speeds above 10 m s−1, transfer of nitrogen to the particle phase would increase the deposition rate and hence decrease horizontal transport prior to surface removal.

Corresponding author address: S. C. Pryor, Atmospheric Science Program, Dept. of Geography, Indiana University, Bloomington, IN 47405.

spryor@indiana.edu

Save
  • Asman, W. A. H., 1994: Estimation of the net air–sea flux of ammonia over the southern bight of the North Sea. Atmos. Environ.,28, 3647–3654.

  • Asman, W. A. H., and Coauthors, 1995: Atmospheric nitrogen input to the Kattegat. Ophelia,42, 5–28.

  • Barrie, L. A., J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen, 1988: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature,334, 138–141.

  • Beichert, P., and B. J. Finlayson-Pitts, 1996: Knudsen cell studies of the uptakes of gaseous HNO3 and other oxides of nitrogen on solid NaCl: The role of surface-adsorbed water. J. Phys. Chem.,100, 15 218–15 228.

  • Fenter, F. F., F. Caloz, and M. J. Rossi, 1994: Kinetics of nitric acid uptake by salt. J. Phys. Chem.,98, 9801–9810.

  • Fisher, D., and M. Oppenheimer, 1991: Atmospheric nitrogen deposition and the Chesapeake Bay estuary. Ambio,20, 102–108.

  • Fitzgerald, J. W., 1975: Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. Appl. Meteor.,14, 1044–1049.

  • Galloway, J., H. Levy, and P. Kasibhatla, 1994: Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen. Ambio,23, 120–123.

  • Geernaert, L. L. S., G. L. Geernaert, K. Granby, and W. A. H. Asman, 1998: Fluxes of soluble gases in the marine atmosphere surface layer. Tellus,50B, 111–127.

  • Hummelshøj, P., N. O. Jensen, and S. E. Larsen, 1992: Particle dry deposition to a sea surface. Fifth Int. Conf. on Precipitation Scavenging and Atmosphere–Surface Exchange Processes, S. E. Schwartz and W. G. N. Slinn, Eds., Hemisphere, 829–840.

  • Joffre, S. M., 1988: Modelling the dry deposition velocity of highly soluble gases to the sea surface. Atmos. Environ.,22, 1137–1146.

  • Kramm, G., and R. Dlugi, 1994: Modelling the vertical fluxes of nitric acid, ammonia and ammonium nitrate. J. Atmos. Chem.,18, 319–357.

  • Larsen, S. E., J. B. Edson, P. Hummelshøj, N. O. Jensen, G. de Leeuw, and P. G. Mestayer, 1995: Dry deposition of particles to ocean surfaces. Ophelia,42, 193–204.

  • Mamane, Y., and J. Gottlieb, 1992: Nitrate formation on sea-salt and mineral particles—A single particle approach. Atmos. Environ.,26A, 1763–1769.

  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps, E. C. Monahan and G. Mac Niocaill, Eds., D. Reidel, 167–174.

  • Paerl, H. W., 1995: Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia,41, 237–259.

  • Pryor, S. C., and R. J. Barthelmie, 2000: Particle dry deposition to water surfaces: Processes and consequences. Seas at the Millennium, C. Sheppard, Ed., Vol. 3, Elsevier Science, 127–139.

  • Pryor, S. C., R. J. Barthelmie, L. L. S. Geernaert, T. Ellermann, and K. D. Perry, 1999a:Speciated particle dry deposition to the sea surface: Results from ASEPS ’97. Atmos. Environ.,33, 2045–2058.

  • Pryor, S. C., R. J. Barthelmie, and B. Jensen, 1999b: Nitrogen dry deposition at an AmeriFlux site in a hardwood forest in the Midwest. Geophys. Res. Lett.,26, 691–694.

  • Rendell, A. R., C. J. Ottley, T. D. Jickells, and R. M. Harrison, 1993:The atmospheric input of nitrogen species to the North Sea. Tellus,45B, 53–63.

  • Sander, R., and P. J. Crutzen, 1996: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res.,101, 9121–9138.

  • Seinfeld, J., and S. Pandis, 1998: Atmospheric Chemistry and Physics:From Air Pollution to Climate Change. Wiley–Interscience, 1326 pp.

  • Sievering, H., D. Burton, and N. Caine, 1992: Atmospheric loadings of nitrogen to alpine tundra in the Colorado front range. Global Biogeochem. Cycles,6, 339–346.

  • Slinn, W., and Coauthors, 1978: Some aspects of the transfer of atmospheric trace constituents past the air–sea interface. Atmos. Environ.,12, 2055–2087.

  • Smith, M. H., P. M. Park, and I. E. Consterdine, 1993: Marine aerosol concentrations and estimated fluxes over the sea. Quart. J. Roy. Meteor. Soc.,119, 809–824.

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman, 1997: Human alteration of the global nitrogen cycle: Sources and consequences. Eco. Appl.,7, 737–750.

  • Weiss, D. D., and G. E. Ewing, 1999: Water content and morphology of sodium chloride aerosol particles. J. Geophys. Res.,104, 21 275–21 285.

  • Williams, R. M., 1982: A model for the dry deposition of particles to natural surface waters. Atmos. Environ.,16, 1933–1938.

  • Wu, J., 1988: Variations of whitecap coverage with wind stress and water temperature. J. Phys. Oceanogr.,18, 1488–1453.

  • Zufall, M. J., and C. I. Davidson, 1998: Dry deposition of particles. Atmospheric Particles, R. M. Harrison and R. E. van Grieken, Eds., John Wiley and Sons, 425–473.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4395 458 30
PDF Downloads 2610 165 11