• Atlas, D., and A. C. Chmela, 1957: Physical-synoptic variations of drop-size parameters. Proc. Sixth Weather Radar Conf., Boston, MA, Amer. Meteor. Soc., 21–30.

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Campos, E., 1998: Measurements of raindrop size distributions by three different sensors. M.S. thesis, Dept. of Atmospheric and Oceanic Sciences, McGill University, 96 pp. [Available from Redpath Library, McGill University, Montreal, PQ H3A 2K6, Canada.].

  • Chahine, M., 1972: A general relaxation method for inverse solution of the full radiative transfer equation. J. Atmos. Sci.,29, 741–747.

  • Chandrasekar, V., and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol.,4, 464–478.

  • Delahaye, J. Y., J. P. Vinson, C. Gloaguen, and P. Golé, 1997: Le Spectropluviometre CETP. Document de Travail CETP, Version 3.1, 31 pp. [Available online at http://www.cetp.ipsl.fr/lactiv/21mineu/ema/Spectrol.html.].

  • Diem, M., 1966: Rains in the Arctic, temperate, and tropical zones. Science Report, Meteorologisches Institut Technische Hochschule, Karlsruhe, Germany, 93 pp.

  • Distromet, 1975: Distrometer RD-69: Instruction manual. Distromet, Ltd., 18 pp. [Available from Distromet, Ltd., P.O. Box 33, CH-4020 Basel, Switzerland.].

  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water drops in stagnant air. J. Meteor.,6, 243–248.

  • Hauser, D., P. Amayenc, B. Nutten, and P. Waldteufel, 1984: A new optical instrument for simultaneous measurements of raindrop diameter and fall speed distribution. J. Atmos. Oceanic Technol.,1, 256–269.

  • Joss, J., and A. Waldvogel, 1967: Ein spektrograph für Niedershlagstropfen mit automatischer Auswertung (A spectrograph for the automatic analysis of raindrops). Pure Appl. Geophys.,68, 240–246.

  • Joss, J., and A. Waldvogel, 1977: Comments on “Some observations on the Joss–Waldvogel rainfall disdrometer.” J. Appl. Meteor.,16, 112–114.

  • Kinnell, P. I. A., 1972: The acoustic measurement of water drop impacts. J. Appl. Meteor.,11, 691–694.

  • Kinnell, P. I. A., 1976: Some observations on the Joss–Waldvogel rainfall disdrometer. J. Appl. Meteor.,15, 499–502.

  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor.,5, 165–166.

  • Muchnik, V. M., 1961: O tochnosti izmereniya intensivnosti dozhdei radiolokatsionnymi metodami (The accuracy of radar rain-intensity measurements). Meteor. Gidrol.,2, 44–47.

  • Mueller, E. A., and A. L. Sims, 1966: The influence of sampling volume on raindrop size spectra. Proc. 12th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 135–141.

  • Press, W., B. Flannery, S. Teukolsky, and W. Vetterling, 1989: Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge University Press, 759 pp.

  • Ralph, F. M., P. J. Neiman, D. W. van de Kamp, and D. C. Law, 1995:Using spectral moment data from NOAA’s 404-MHz radar wind profilers to observe precipitation. Bull. Amer. Meteor. Soc.,76, 1717–1739.

  • Ramana Murty, Bh. V., and S. C. Gupta, 1959: Precipitation characteristics based on raindrop size measurements at Delhi and Khandala during southwest monsoon. J. Sci. Ind. Res.,18A, 352–371.

  • Rogers, R. R., S. A. Cohn, W. L. Ecklund, J. S. Wilson, and D. A. Carter, 1994: Experience from one year of operating a boundary-layer profiler in the center of a large city. Ann. Geophys.,12, 529–540.

  • Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci.,52, 1070–1083.

  • Sheppard, B. E., 1990a: Effect of irregularities in the diameter classification of raindrops by the Joss–Waldvogel disdrometer. J. Atmos. Oceanic Technol.,7, 180–183.

  • Sheppard, B. E., 1990b: Measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol.,7, 255–268.

  • Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol.,11, 874–887.

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor.,22, 1764–1775.

  • Zawadzki, I., 1984: Factors affecting the precision of radar measurements of rain. Preprints, 22d Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

  • Zawadzki, I., and M. de Agostinho Antonio, 1988: Equilibrium raindrop size distributions in tropical rain. J. Atmos. Sci.,45, 3452–3459.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 156 10
PDF Downloads 47 47 7

Instrumental Uncertainties in Z–R Relations

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Intercomparisons among three different sensors for ground-based measurement of drop size distributions are presented: the Joss–Waldvogel distrometer, the optical spectro-pluviometer, and the precipitation occurrence sensor system. Data corresponding to stratiform, continental rain are analyzed, and reflectivity factor–rain rate at the ground (Z–R) relationships are obtained from simultaneous measurements by the three sensors. The Z–R relations derived from the three sensors show differences comparable to the ones seen in distinct climatic regions. In addition, the Z–R relationships are found to be sensitive to the data analysis method.

* Current affiliation: Instituto Meteorológico Nacional, San José, Costa Rica.

Corresponding author address: Isztar Zawadzki, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. W., Montreal, PQ H3A 2K6, Canada.

isztar@zephyr.meteo.mcgill.ca

Abstract

Intercomparisons among three different sensors for ground-based measurement of drop size distributions are presented: the Joss–Waldvogel distrometer, the optical spectro-pluviometer, and the precipitation occurrence sensor system. Data corresponding to stratiform, continental rain are analyzed, and reflectivity factor–rain rate at the ground (Z–R) relationships are obtained from simultaneous measurements by the three sensors. The Z–R relations derived from the three sensors show differences comparable to the ones seen in distinct climatic regions. In addition, the Z–R relationships are found to be sensitive to the data analysis method.

* Current affiliation: Instituto Meteorológico Nacional, San José, Costa Rica.

Corresponding author address: Isztar Zawadzki, Dept. of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke St. W., Montreal, PQ H3A 2K6, Canada.

isztar@zephyr.meteo.mcgill.ca

Save