• Al-Khatib, H. N., T. A. Seliga, and V. N. Bringi, 1979: Differential reflectivity and its use in the radar measurements of rainfall. Ohio State University Atmos. Sci. Prog. Rep. AS-S-106, 131 pp.

  • Askelson, M. A., J. M. Straka, and D. S. Zrnić, 1997: A study of the kinematics and microphysical evolution of a supercell from first echo using polarization diversity radar. Preprints, 28th Int. Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 9–10.

  • Askelson, M. A., J. M. Straka, and D. S. Zrnić, 1998: Kinematical and microphysical evolution of the 22 June 1995 storm. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 56–59.

  • Atlas, D., S. Y. Matrosov, A. J. Heymsfield, M.-D. Chou, and D. B. Wolff, 1995: Radar and radiation properties of ice clouds. J. Appl. Meteor.,34, 2329–2345.

  • Auer, A. H., and P. L. Veal, 1970: The dimensions of ice crystals in natural clouds. J. Atmos. Sci.,27, 919–926.

  • Aydin, K., and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci.,41, 1887–1892.

  • Aydin, K., and Y. Zhao, 1990: A computational study of polarimetric radar observables in hail. IEEE Trans. Geosci. Remote Sens.,28, 412–421.

  • Aydin, K., and V. Giridhar, 1992: C-band dual polarization radar observables in rain. J. Atmos. Oceanic Technol.,9, 383–390.

  • Aydin, K., and D. S. Zrnić, 1992: Modeling polarimetric signatures of precipitation. Appl. Comp. Electrom. Soc.,7, 22–25.

  • Aydin, K., and C. Tang, 1997: Relationships between IWC and polarimetric measurands at 94 and 220 GHz for hexagonal columns and plates. J. Atmos. Oceanic Technol.,14, 1055–1063.

  • Aydin, K., T. A. Seliga, and V. N. Bringi, 1984: Differential radar scattering properties of model hail and mixed phase hydrometeors. Radio Sci.,19, 58–66.

  • Aydin, K., Y. M. Lure, and T. A. Seliga, 1986a: Polarimetric radar measurements of rainfall compared with ground-based rain gauges during MAYPOL ’84. IEEE Trans. Geosci. Remote Sens.,28, 412–422.

  • Aydin, K., T. A. Seliga, and V. Balaji, 1986b: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor.,25, 1475–1484.

  • Aydin, K., Y. Zhao, and T. A. Seliga, 1990: A differential reflectivity radar hail measurement technique: Observations during the Denver hailstorm of 13 June 1984. J. Atmos. Oceanic Technol.,7, 104–113.

  • Aydin, K., T. M. Walsh, and D. S. Zrnić, 1993: Analysis of the dual-polarization radar and T-28 aircraft mesurements during an Oklahoma hailstorm. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 540–542.

  • Aydin, K., V. N. Bringi, and L. Liu, 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters. J. Appl. Meteor.,34, 404–410.

  • Bader, M. J., S. A. Clough, and G. P. Fox, 1987: Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc.,113, 491–515.

  • Balakrishnan, N., and D. S. Zrnić, 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci.,47, 565–583.

  • Balakrishnan, N., and D. S. Zrnić, 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci.,47, 1525–1540.

  • Balakrishnan, N., D. S. Zrnić, J. Goldhirsh, and J. Rowland, 1989: Comparison of simulated rain rates from disdrometer data employing polarimetric radar algorithms. J. Atmos. Oceanic Technol.,6, 476–486.

  • Barge, B. L., and G. A. Isaac, 1973: The shape of Alberta hailstones. J. Rech. Atmos.,7, 11–20.

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 323 pp.

  • Beard, K. V., and A. R. Jameson, 1983: Raindrop canting. J. Atmos. Sci.,40, 448–454.

  • Beard, K. V., and J. Q. Feng, 1991: A perturbation model of raindrop oscillation characteristics with aerodynamic effects. J. Atmos. Sci.,48, 1856–1868.

  • Beard, K. V., R. J. Kubesh, and H. T. Ochs III, 1991: Laboratory measurements of small drop distortion. Part I: Axis ratios and fall behavior. J. Atmos. Sci.,48, 698–710.

  • Blackman, M., and A. J. Illingworth, 1993: Differential phase measurement of precipitation. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 745–747.

  • Bluestein, H. B., 1992: Synoptic–Dynamic Meteorology in Midlatitudes. Oxford University Press, 431 pp.

  • Boucher, R. J., and J. G. Wieler, 1985: Radar determination of snowfall rate and accumulation. J. Appl. Meteor.,24, 68–73.

  • Brandes, E. A., C. Kessinger, J. D. Tuttle, and J. Vivekanandan, 1993:An evaluation of multiparameter radar measurements for detecting hail. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 522–524.

  • Brandes, E. A., J. Vivekanandan, J. D. Tuttle, and C. J. Kessinger, 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev.,123, 3129–3143.

  • Brandes, E. A., J. Vivekanandan, and J. W. Wilson, 1997: Radar rainfall estimates of the Buffalo Creek flash flood using WSR-88D and polarimetric radar data. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 123–124.

  • Bringi, V. N., T. A. Seliga, and W. A. Cooper, 1984: Analysis of aircraft hydrometeor spectra and differential reflectivity (ZDR) radar measurements during the Cooperative Convective Precipitation Experiment. Radio Sci.,19, 157–167.

  • Bringi, V. N., R. M. Rasmussen, and J. Vivekanandan, 1986a: Multiparameter radar measurements in Colorado convective storms. Part I: Graupel melting studies. J. Atmos. Sci.,43, 2545–2563.

  • Bringi, V. N., J. Vivekanandan, and J. D. Tuttle, 1986b: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci.,43, 2564–2577.

  • Bringi, V. N., D. A. Burrows, and S. M. Menon, 1991: Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor.,30, 853–880.

  • Bringi, V. N., D. Brunkow, V. Chandrasekar, S. Ruthledge, P. Kennedy, and A. Mudukutore, 1993: Polarimetric measurements in Colorado convective storms using the CSU-CHILL radar. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 519–521.

  • Bringi, V. N., L. Liu, P. C. Kennedy, V. Chandrasekar, and S. A. Rutledge, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys.,59, 3–31.

  • Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification experiment: The case of 9 August 1991. Mon. Wea. Rev.,125, 2131–2159.

  • Bringi, V. N., V. Chandrasekar, and X. Rongrui, 1998: Raindrop axis ratios and size distributions in Florida rainshafts: An assessment of multiparameter radar algorithms. IEEE Trans. Geosci. Remote Sens.,36, 703–715.

  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res.,103, 13 979–14 000.

  • Caylor, I. J., and V. Chandrasekar, 1996: Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar. IEEE Trans. Geosci. Remote Sens.,34, 847–858.

  • Chandrasekar, V., V. N. Bringi, N. Balakrishnan, and D. S. Zrnić, 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol.,7, 621–629.

  • Cheng, L., and M. English, 1983: A relationship between hailstone concentration and size. J. Atmos. Sci.,40, 204–213.

  • Churchill, D. D., and R. A. Houze Jr., 1984: Mesoscale updraft magnitude and cloud-ice content from the ice budget of the stratiform region of a tropical cloud cluster. J. Atmos. Sci.,41, 1717–1725.

  • Conway, J. W., and D. S. Zrnić, 1993: A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev.,121, 2512–2528.

  • Davis, C. I., and A. H. Auer Jr., 1974: Use of isolated orographic clouds to establish the accuracy of diffusional ice crystal growth equations. Preprints, Conf. on Cloud Physics, Tucson, AZ, Amer. Meteor. Soc., 141–147.

  • Detwiler, A. G., N. C. Knight, and A. J. Heymsfield, 1993: Magnitude of error factors in estimates of snow-particle masses from images. J. Appl. Meteor.,32, 804–809.

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. S. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol.,17, 257–278.

  • Evans, K. F., and J. Vivekanandan, 1990: Multiparameter radar and microwave radiative transfer modeling of nonspherical atmospheric ice particles. IEEE Trans. Geosci. Remote Sens.,28, 423–437.

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci.,51, 249–280.

  • Frank, W. M., and C. Cohen, 1987: Simulation of tropical convective systems. Part I: A cumulus parameterization. J. Atmos. Sci.,44, 3787–3799.

  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report on the eighth prospectus development team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc.,79, 285–299.

  • Frost, I. R., A. J. Illingworth, and I. J. Caylor, 1989: Aircraft and polarization radar measurements of a triggered lightning event. Proc. Int. Lightning and Static Electricity Conf., 1A.1.1–1A.1.4.

  • Frost, I. R., J. W. F. Goddard, and A. J. Illingworth, 1991: Hydrometeor identification using cross polar radar measurements and aircraft verification. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 658–661.

  • Fulton, R., and G. M. Heymsfield, 1991: Microphysical and radiative characteristics of convective clouds during COHMEX. J. Appl. Meteor.,30, 98–116.

  • Galati, G., and G. Pavan, 1995: Computer simulation of weather radar signals. Simul. Pract. Theory,3, 17–44.

  • Gal-Chen, T., 1978: A method for initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev.,106, 587–606.

  • Goddard, J. W. F., S. M. Cherry, and V. N. Bringi, 1982: Comparison of dual-polarization radar measurements of rain with ground-based disdrometer measurements. J. Appl. Meteor.,21, 252–256.

  • Golestani, Y., V. Chandrasekar, and V. N. Bringi, 1989: Intercomparison of multiparameter radar measurements. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 309–314.

  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1993: A robust pointwise estimator of rainfall rate and liquid water content using polarization diversity radar. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 777–779.

  • Gorgucci, E., V. Chandrasekar, and G. Scarchilli, 1995: Radar and surface measurement of rainfall during CaPE: 26 July 1991 case study. J. Appl. Meteor.,34, 1570–1577.

  • Gosset, M. E. J., A. J. Illingworth, P. R. A. Brown, and J. W. G. Thomason, 1995: The effect of ice crystal density assumption in inferring reflectivity vs ice content relationship. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 547–549.

  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor.,6, 243–248.

  • Hagen, M., J. Hubbert, C. Richter, V. N. Bringi, and P. Meischner, 1993: Bright band observations with radar and aircraft. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 304–305.

  • Hall, M. P. M., S. M. Cherry, J. W. Goddard, and G. R. Kennedy, 1980: Raindrop sizes and rainfall rate measured by dual-polarization radar. Nature,285, 195–198.

  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci.,19, 132–140.

  • Harrington, J. L., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995:Parameterization of ice crystal conversion in cirrus clouds using double moment basis functions. J. Atmos. Sci.,52, 4344–4366.

  • Hauser, D., and P. Ameyanc, 1986: Retrieval of cloud water and water vapor contents from Doppler radar data in a tropical squall line:Application to the case of a tropical squall line. J. Atmos. Sci.,43, 823–838.

  • Hendry, A., G. C. McCormick, and L. G. Barge, 1976: Ku-band and S-band observations of differential propagation constant in snow. IEEE Trans. Antennas Propag.,AP-24, 521–525.

  • Hendry, A., Y. M. M. Antar, and G. C. McCormick, 1987: On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Sci.,22, 37–50.

  • Herzegh, P. H., and P. V. Hobbs, 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-frontal clouds. J. Atmos. Sci.,37, 597–611.

  • Herzegh, P. H., and A. R. Jameson, 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc.,73, 1365–1374.

  • Heymsfield, A. J., 1972: Ice crystal terminal velocities. J. Atmos. Sci.,29, 1348–1357.

  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci.,34, 367–381.

  • Holler, H., V. N. Bringi, J. Hubbert, M. Hagen, and P. F. Meischner, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci.,51, 2500–2522.

  • Hubbert, J. V., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol.,12, 643–648.

  • Hubbert, J. V., and V. N. Bringi, 1997: The effects of 3-body scattering on differential reflectivity. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 11–12.

  • Hubbert, J. V., V. Chandrasekar, V. N. Bringi, and P. Meischner, 1993a: Processing and interpretation of coherent dual-polarized radar measurements. J. Atmos. Oceanic Technol.,10, 155–164.

  • Hubbert, J. V., V. N. Bringi, H. Holler, M. Hagen, and P. Meischner, 1993b: Examples of polarimetric C-band radar measurements from convective storms during CLEOPATRA. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 528–529.

  • Hubbert, J. V., V. N. Bringi, H. Holler, and P. Meischner, 1995: C-band polarimetric signatures from a convective storm during CLEOPATRA. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 443–445.

  • Hubbert, J. V., V. N. Bringi, and L. D. Carey, 1998: CSU-CHILL polarimetric radar measurements from a severe hail storm in Eastern Colorado. J. Appl. Meteor.,37, 749–775.

  • Husson, D., and Y. Pointin, 1989: Quantitative estimation of the hail fall intensity with a dual polarization radar and a hailpad network. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 318–321.

  • Illingworth, A. J., 1988: The formation of rain in convective clouds. Nature,336, 754–756.

  • Illingworth, A. J., and I. J. Caylor, 1986: Detection of hail by dual-polarization radar. Nature,320, 431–433.

  • Illingworth, A. J., and I. J. Caylor, 1989: Cross-polar observation of the bright band. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 323–327.

  • Illingworth, A. J., and I. J. Caylor, 1991: Copolar correlation measurements of precipitation. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 650–653.

  • Illingworth, A. J., and D. S. Zrnić, 1995: Workshop on weather radar polarimetry for research and operational applications. Bull. Amer. Meteor. Soc.,76, 555–558.

  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1986: Detection of hail by dual-polarization radar. Nature,320, 431–433.

  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc.,113, 469–489.

  • Jameson, A. R., 1985: On deducing the microphysical character of precipitation from multiple-parameter radar polarization measurements. J. Climate Appl. Meteor.,24, 1037–1047.

  • Jameson, A. R., 1989: The interpretation and meteorological application of radar backscatter amplitude ratios at linear polarizations. J. Atmos. Oceanic Technol.,6, 908–919.

  • Jameson, A. R., 1991: A comparison of microwave techniques for measuring rainfall. J. Appl. Meteor.,30, 32–50.

  • Jameson, A. R., and K. V. Beard, 1982: Raindrop axial ratios. J. Appl. Meteor.,21, 257–259.

  • Jameson, A. R., and J. H. Davé, 1988: An interpretation of circular polarization measurements affected by propagation differential phase shift. J. Atmos. Oceanic Technol.,5, 405–415.

  • Jameson, A. R., M. J. Murphy, and E. P. Krider, 1996: Multiple-parameter radar observations of isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor.,35, 343–354.

  • Jayaweera, K. O. L. F., and R. E. Cottis, 1969: Fall velocities of plate-like and columnar ice crystals. Quart. J. Roy. Meteor. Soc.,95, 703–709.

  • Jones, D. M., 1959: The shape of raindrops. J. Atmos. Sci.,16, 504–510.

  • Joss, J., and I. Zawadzki, 1997: Raindrop distributions again? Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 326–327.

  • Keenan, T., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimeteric (C-POL) radar system. J. Atmos. Oceanic Technol.,15, 871–886.

  • Kennedy, P. C., S. A. Rutledge, and V. N. Bringi, 1997: Hail precursor signatures observed in multiparameter radar data. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 51–52.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation.Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Knight, C. A., and N. C. Knight, 1970: The falling behavior of hailstones. J. Atmos. Sci.,27, 672–681.

  • Knight, N. C., 1986: Hailstone shape factor and its relation to radar interpretation of hail. J. Climate Appl. Meteor.,25, 1956–1958.

  • Kry, P. R., and R. List, 1974: Angular motions of freely falling spheroidal hailstone models. Phys. Fluids,17, 1093–1102.

  • Leitao, M. J., and P. A. Watson, 1984: Application of dual linearly polarized radar data to prediction of microwave path attenuation at 10–30 GHz. Radio Sci.,19, 209–221.

  • Lemon, L. R., 1998: The radar “Three-body scatter spike”: An operational large-hail signature. Wea. Forecasting,13, 327–340.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor.,22, 1065–1092.

  • Lipshutz, R. C., J. F. Pratte, and J. R. Smart, 1986: An operational ZDR-based precipitation type/intensity product. Preprints, 23d Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., JP91–JP94.

  • List, R., 1986: Properties and growth of hailstones. Thunderstorm Dynamics and Morphology, E. Kessler, Ed., University of Oklahoma Press, 259–276.

  • List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci.,28, 110–115.

  • List, R., U. W. Rentsch, A. C. Byram, and E. P. Lozowski, 1973: On the aerodynamics of spheroidal hailstone models. J. Atmos. Sci.,30, 653–661.

  • Liu, L., V. N. Bringi, I. J. Caylor, and V. Chandrasekar, 1993: Intercomparison of multiparameter radar signatures from Florida storms. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 733–735.

  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res.,79, 2185–2197.

  • Lohmeier, S. P., S. M. Sekelsky, J. M. Firda, G. A. Sadowy, and R. E. McIntosh, 1997: Classification of particles in stratiform clouds using the 33 and 95 GHz polarimetric Cloud Profiling Radar System (CPRS). IEEE Trans. Geosci. Remote Sens.,35, 256–258.

  • Loney, M. L., D. S. Zrnić, A. V. Ryzhkov, and J. M. Straka, 1999: In situ and multiparameter radar observations of an isolated Oklahoma supercell at far range. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 188–191.

  • Longtin, D. R., C. F. Bohren, and L. J. Battan 1987: Radar backscattering by large, spongy ice oblate spheroids. J. Atmos. Oceanic Technol.,4, 355–358.

  • Lopez, R. E., and J. P. Aubagnac, 1997: The lightning activity of a hailstorm as a function of changes in its microphysical characteristics inferred from polarimetric radar observations. J. Geophys. Res.,102, 16 799–16 813.

  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci.,41, 2836–2848.

  • Mango, S. C., and C. W. Lee, 1966: Meteorological classification of natural crystals. J. Fac. Sci., Hokkaido Univ., Ser. 7, 321–362.

  • Marshall, J. S., and M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor.,5, 165–166.

  • Mason, B. J., 1971: The Physics of Clouds. 2d ed. Oxford University Press, 671 pp.

  • Mason, B. J., 1994: The shape of snow crystals—Fitness for purpose? Quart. J. Roy. Meteor. Soc.,120, 849–860.

  • Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds. J. Atmos. Sci.,48, 1062–1070.

  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens.,30, 454–461.

  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol.,13, 85–96.

  • Matson, R. J., and A. W. Huggins, 1980: The direct measurement of the sizes, shapes, and kinematics of falling hailstones. J. Atmos. Sci.,37, 1107–1125.

  • May, P. T., A. R. Jameson, T. D. Keenan, P. E. Johnson, and W. Ecklund, 1999a: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of sea breeze thunderstorms. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 347–350.

  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge, 1999b: Polarimetric radar measurements of tropical rain at a 5-cm wavelength. J. Appl. Meteor.,38, 750–765.

  • McCormick, G. C., L. E. Allan, and A. Hendry, 1979: The backscatter matrix of ice samples: Its relation to identification of hail by radar. J. Appl. Meteor.,18, 77–84.

  • Mead, J. B., P. M. Langlois, P. S. Chang, and R. E. McIntosh, 1991:Polarimetric scattering from natural surfaces at 225 GHz. IEEE Trans. Antennas Propag.,39, 1405–1411.

  • Meischner, P. F., V. N. Bringi, M. Hagen, and H. Holler, 1991a: Multiparameter radar characteristics of a melting layer compared with in situ measurements. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 721–724.

  • Meischner, P. F., V. N. Bringi, M. Hagen, and H. Holler, 1991b: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev.,119, 678–701.

  • Meischner, P. F., C. Collier, A. Illingworth, J. Joss, and W. Randeu, 1997: Advanced weather radar systems in Europe: The COST 75 action. Bull. Amer. Meteor. Soc.,78, 1411–1430.

  • Mendel, J., 1995: Fuzzy logic systems for engineering: A tutorial. Proc. IEEE,83, 345–377.

  • Metcalf, J. I., A. W. Bishop, R. C. Chanley, T. C. Heitt, and P. J. Petrocchi, 1993: An 11-cm coherent polarimetric radar for meteorological research. J. Atmos. Oceanic Technol.,10, 249–261.

  • Mitchell, D. L., 1994: A model predicting the evolution of ice particles, size spectra, and radiative properties of cirrus clouds. Part I: Microphysics. J. Atmos. Sci.,51, 797–816.

  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor.,29, 153–163.

  • Moninger, W. R., V. N. Bringi, T. R. Detman, J. R. Jordan, T. A. Seliga, and K. Aydin, 1984: Melting layer observations during MAYPOLE. Preprints, 22d Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 364–369.

  • Ohtake, T., and T. Henmi, 1970: Radar reflectivity of aggregated snowflakes. Preprints, 14th Radar Meteorology Conf., Tucson, AZ, Amer. Meteor. Soc., 209–210.

  • Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc.,96, 247–256.

  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci.,28, 86–94.

  • Pruppacher, H. R., and J. D. Klett, 1981: Microphysics of Clouds and Precipitation. Reidel, 714 pp.

  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci.,44, 2754–2763.

  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: Part III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci.,41, 381–388.

  • Rauber, R. M., K. V. Beard, and B. M. Andrews, 1991: A mechanism for giant raindrop formation in warm, shallow convective clouds. J. Atmos. Sci.,48, 1791–1797.

  • Reinking, R. F., S. Y. Matrosov, R. T. Bruintjes, and B. E. Martner, 1997: Identification of hydrometeors with elliptical and linear polarization Ka-band radar. J. Appl. Meteor.,36, 322–339.

  • Rosenfeld, D., E. Amitai, and D. B. Wolff, 1995a: Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor.,34, 198–211.

  • Rosenfeld, D., E. Amitai, and D. B. Wolff, 1995b: Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. J. Appl. Meteor.,34, 212–223.

  • Ryzhkov, A. V., and D. S. Zrnić, 1995a: Comparison of dual-polarization radar estimators of rain. J. Atmos. Oceanic Technol.,12, 249–256.

  • Ryzhkov, A. V., and D. S. Zrnić, 1995b: Polarimetric measurements of snow. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 458–460.

  • Ryzhkov, A. V., and D. S. Zrnić, 1995c: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor.,34, 2121–2134.

  • Ryzhkov, A. V., and D. S. Zrnić, 1996a: Rain in shallow and deep convection measured with a polarimetric radar. J. Atmos. Sci.,53, 2989–2995.

  • Ryzhkov, A. V., and D. S. Zrnić, 1996b: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor.,35, 2080–2090.

  • Ryzhkov, A. V., and D. S. Zrnić, 1997: Polarimetrically tuned R(Z) relations and comparisons of radar rainfall methods. J. Appl. Meteor.,36, 340–349.

  • Ryzhkov, A. V., and D. S. Zrnić, 1998a: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor.,37, 1228–1440.

  • Ryzhkov, A. V., and D. S. Zrnić, 1998b: Beamwidth effects on the differential phase measurements of rain. J. Atmos. Oceanic Technol.,15, 624–634.

  • Ryzhkov, A. V., and D. S. Zrnić, 1998c: Polarimetric rainfall in the presence of anomalous propagation. J. Atmos. Oceanic Technol.,15, 1320–1330.

  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor.,37, 125–134.

  • Sachidananda, M., and D. S. Zrnić, 1985: ZDR measurement considerations for a fast scan capability radar. Radio Sci.,20, 907–922.

  • Sachidananda, M., and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci.,21, 235–247.

  • Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol.,4, 588–598.

  • Sassen, K. D., 1987: Ice cloud content from radar reflectivity. J. Appl. Meteor.,26, 1050–1053.

  • Schroth, A. C., M. S. Chandra, and P. F. Meischner, 1988: A C-band coherent polarimetric radar for propagation and cloud physics research. J. Atmos. Oceanic Technol.,5, 803–822.

  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci.,27, 299–307.

  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor.,15, 69–76.

  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci.,13, 271–275.

  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci.,52, 1265–1287.

  • Smith, P., 1984: Equivalent radar reflectivity factor for snow and ice particles. J. Climate Appl. Meteor.,23, 1258–1260.

  • Steinhorn, I., and D. S. Zrnić, 1988: Potential uses of differential propagation phase constant to estimate raindrop and hailstone size distributions. IEEE Trans. Geosci. Remote Sens.,26, 639–648.

  • Straka, J. M., 1994: Representing moisture processes in mesoscale numerical models. Mesoscale Modeling of the Atmosphere, Meteor. Monogr., No. 47, Amer. Meteor. Soc., 29–38.

  • Straka, J. M., 1996: Hydrometeor fields in a supercell storm as deduced from dual-polarization radar. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 551–554.

  • Sun, J., and N. A. Crook, 1996: Comparison of thermodynamic retrieval by the adjoint method with the traditional method. Mon. Wea. Rev.,124, 308–324.

  • Takahashi, T., and K. Kuhara, 1993: Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. J. Meteor. Soc. Japan,71, 21–31.

  • Thomason, J. W. G., A. J. Illingworth, and V. Marecal, 1995: Density and size distribution of aggregating snow particles inferred from coincident aircraft and radar observation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 127–129.

  • Tokay, A., and K. V. Beard, 1996: A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteor.,35, 1671–1687.

  • Tong, H., V. Chandrasekar, K. R. Knupp, and J. Stalker, 1998: Multiparameter radar observations of time evolution of convective storms: Evaluation of water budgets and latent heating rates. J. Atmos. Oceanic Technol.,15, 1097–1109.

  • Torlaschi, E., R. G. Humphries, and B. L. Barge, 1984: Circular polarization for precipitation measurement. Radio Sci.,19, 193–200.

  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparisons with model results. J. Atmos. Sci.,46, 601–620.

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor.,22, 1764–1775.

  • Ulbrich, C. W., and D. Atlas, 1982: Hail parameter relations: A comprehensive digest. J. Appl. Meteor.,21, 22–43.

  • Ulbrich, C. W., and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci.,19, 49–57.

  • Ulbrich, C. W., and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor.,37, 912–923.

  • Uyeda, H., R. Shirooka, K. Iwanami, A. Takemoto, and K. Kikuchi, 1991: Observation of vertical structure of convective snow clouds with a dual-polarization radar in Hokkaido, Japan. Preprints, 25th Int. Conf. on Radar Meteor., Paris, France, Amer. Meteor. Soc., 717–720.

  • Vieux, B. E., and P. E. Bedient, 1998: Estimation of rainfall for flood prediction from WSR-88D reflectivity: A case study, 17–18 October 1994. Wea. Forecasting,13, 407–415.

  • Vivekanandan, J., and W. M. Adams, 1993: Theoretical investigation of multiparameter radar scattering characteristics of ice crystals. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 109–111.

  • Vivekanandan, J., V. N. Bringi, and R. Raghavan, 1990: Multiparameter radar modeling and observations of melting ice. J. Atmos. Sci.,47, 549–564.

  • Vivekanandan, J., R. Raghavan, and V. N. Bringi, 1993a: Polarimetric radar modeling of mixture of precipitation particles. IEEE Trans. Geosci. Remote Sens.,31, 1017–1030.

  • Vivekanandan, J., J. D. Tuttle, and E. A. Brandes, 1993b: Observational and modeling considerations for multiparameter radar detection of hail. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 525–527.

  • Vivekanandan, J., V. N. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens.,32, 1–10.

  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc.,80, 381–388.

  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev.,116, 1521–1539.

  • Waldvogel, A., B. Federer, and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor.,18, 1521–1525.

  • Walsh, T. M., 1993: Dual-polarization radar and particle probe measurements in an Oklahoma hailstorm. M.S. thesis, The Pennsylvania State University.

  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci.,41, 1648–1661.

  • Young, K. C., 1993: Microphysical Processes in Clouds. Oxford University Press, 427 pp.

  • Zahrai, A., and D. S. Zrnić, 1993: The 10-cm wavelength polarimetric radar at NOAA’s National Severe Storms Laboratory. J. Atmos. Oceanic Technol.,10, 649–662.

  • Zahrai, A., and D. S. Zrnić, 1997: Implementation of polarimetric capability for the WSR-88D (NEXRAD) radar. Preprints, 13th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Long Beach, CA, Amer. Meteor. Soc., 284–287.

  • Zrnić, D. S., 1987: Three-body scattering produces precipitation signature of special diagnostic value. Radio Sci.,22, 76–86.

  • Zrnić, D. S., 1991: Complete polarimetric and Doppler measurements with a single receiver radar. J. Atmos. Oceanic Technol.,8, 159–165.

  • Zrnić, D. S., 1996: Weather radar polarimetry—Trends toward operational applications. Bull. Amer. Meteor. Soc.,77, 1529–1534.

  • Zrnić, D. S., and R. J. Doviak, 1989: Effects of drop oscillations on spectral moments and differential reflectivity measurements. J. Atmos. Oceanic Technol.,6, 532–536.

  • Zrnić, D. S., and A. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol.,13, 454–464.

  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc.,80, 389–406.

  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993a: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor.,32, 678–693.

  • Zrnić, D. S., V. N. Bringi, K. Aydin, N. Balakrishnan, V. Chandrasekar, and J. Hubbert, 1993b: Polarimetric measurements in a severe hailstorm. Mon. Wea. Rev.,121, 2221–2238.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 837 452 23
PDF Downloads 731 460 19

Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations

View More View Less
  • a School of Meteorology and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | b National Severe Storms Laboratory, Norman, Oklahoma
  • | c Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

A new synthesis of information forming the foundation for rule-based systems to deduce dominant bulk hydrometeor types and amounts using polarimetric radar data is presented. The information is valid for a 10-cm wavelength and consists of relations that are based on an extensive list of previous and recent observational and modeling studies of polarimetric signatures of hydrometeors. The relations are expressed as boundaries and thresholds in a space of polarimetric radar variables. Thus, the foundation is laid out for identification of hydrometeor types (species), estimation of characteristics of hydrometeor species (size, concentrations, etc.), and quantification of bulk hydrometeor contents (amounts). A fuzzy classification algorithm that builds upon this foundation will be discussed in a forthcoming paper.

Corresponding author address: Dr. Dusan S. Zrnić, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.

zrnic@nssl.noaa.gov

Abstract

A new synthesis of information forming the foundation for rule-based systems to deduce dominant bulk hydrometeor types and amounts using polarimetric radar data is presented. The information is valid for a 10-cm wavelength and consists of relations that are based on an extensive list of previous and recent observational and modeling studies of polarimetric signatures of hydrometeors. The relations are expressed as boundaries and thresholds in a space of polarimetric radar variables. Thus, the foundation is laid out for identification of hydrometeor types (species), estimation of characteristics of hydrometeor species (size, concentrations, etc.), and quantification of bulk hydrometeor contents (amounts). A fuzzy classification algorithm that builds upon this foundation will be discussed in a forthcoming paper.

Corresponding author address: Dr. Dusan S. Zrnić, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.

zrnic@nssl.noaa.gov

Save