Radiance and Cloud Analyses from GOES-VAS Dwell Soundings

Donald P. Wylie Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Donald P. Wylie in
Current site
Google Scholar
PubMed
Close
and
Harold M. Woolf Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Harold M. Woolf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis technique for Geostationary Operational Environmental Satellite-VISSR (Visible and Infrared Spin Scan Radiometer) Atmospheric Sounder (GOES-VAS) sounder data was developed to extract cloud and clear radiance information. This technique employed many of the concepts used in the International Satellite Cloud Climatology Project (ISCCP) such as spatial and time comparisons of neighboring satellite pixels. It improved upon the previous studies that used VAS data by using all available VAS data at full time and space resolution. The previous studies utilized <10% of the original data.

The GOES-VAS cloud and clear radiance statistics compared well with rawinsondes and the ISCCP cloud analysis. The best agreement between the ISCCP and this GOES-VAS cloud analysis was for upper-tropospheric clouds (<440 hPa) in both cloud frequency and infrared emissivity. The two cloud datasets agreed to within 2% for both parameters. A comparison of the GOES-VAS clear radiance data to National Weather Service (NWS) rawinsondes showed agreement within 1.7 K (blackbody radiances). The upper-tropospheric VAS channels were warmer than the rawinsondes. The VAS water vapor channels suggested that the NWS rawinsondes have a dry bias in the upper troposphere.

Corresponding author address: Dr. Donald P. Wylie, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706.

Abstract

An analysis technique for Geostationary Operational Environmental Satellite-VISSR (Visible and Infrared Spin Scan Radiometer) Atmospheric Sounder (GOES-VAS) sounder data was developed to extract cloud and clear radiance information. This technique employed many of the concepts used in the International Satellite Cloud Climatology Project (ISCCP) such as spatial and time comparisons of neighboring satellite pixels. It improved upon the previous studies that used VAS data by using all available VAS data at full time and space resolution. The previous studies utilized <10% of the original data.

The GOES-VAS cloud and clear radiance statistics compared well with rawinsondes and the ISCCP cloud analysis. The best agreement between the ISCCP and this GOES-VAS cloud analysis was for upper-tropospheric clouds (<440 hPa) in both cloud frequency and infrared emissivity. The two cloud datasets agreed to within 2% for both parameters. A comparison of the GOES-VAS clear radiance data to National Weather Service (NWS) rawinsondes showed agreement within 1.7 K (blackbody radiances). The upper-tropospheric VAS channels were warmer than the rawinsondes. The VAS water vapor channels suggested that the NWS rawinsondes have a dry bias in the upper troposphere.

Corresponding author address: Dr. Donald P. Wylie, Space Science and Engineering Center, University of Wisconsin—Madison, 1225 W. Dayton St., Madison, WI 53706.

Save
  • Alliss, R. J., and S. Raman, 1995a: Quantitative estimates of cloudiness over the Gulf Stream locale using GOES VAS observations. J. Appl. Meteor.,34, 500–510.

  • Alliss, R. J., and S. Raman, 1995b: Diurnal variations in cloud frequency over the Gulf Stream locale. J. Appl. Meteor.,34, 1578–1594.

  • Bates, J. J., W. L. Smith, G. S. Wade, and H. M. Woolf, 1987: An interactive method for processing and display of sea-surface temperature fields using VAS multispectral data. Bull. Amer. Meteor. Soc.,68, 602–606.

  • Chahine, M. T., 1974: Remote sounding of cloudy atmospheres. I: The single cloud layer. J. Atmos. Sci.,31, 233–243.

  • Chesters, D., W. D. Robinson, and L. W. Uccellini, 1987: Optimized retrievals of precipitable water from the VAS split windows. J. Climate Appl. Meteor.,26, 1059–1066.

  • Clough, S. A., and M. J. Iacono, 1995: Line-by-line calculation of atmospheric fluxes and cooling rates. 2: Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res.,100, 16519–16535.

  • Coakley, J. R., and F. P. Bretherton, 1982: Cloud cover from high resolution scanner data: Detecting and allowing for partially filled fields of view. J. Geophys. Res.,87, 4917–4932.

  • Hannon, S., L. L. Strow, and W. W. McMillan, 1996: Atmospheric infrared fast transmittance models: A comparison of two approaches. Proc. SPIE,2830, 94–105.

  • Jin, Y., W. B. Rossow, and D. P. Wylie, 1996: Comparison of the climatologies of high-level clouds from HIRS and ISCCP. J. Climate,9, 2850–2879.

  • McCleese, D. J., and L. W. Wilson, 1976: Cloud top height from temperature sounding instruments. Quart. J. Roy. Meteor. Soc.,102, 781–790.

  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc.,75, 758–781.

  • Menzel, W. P., W. L. Smith, and T. R. Stewart, 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor.,22, 377–384.

  • Menzel, W. P., D. P. Wylie, and K. I. Strabala, 1992: Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with the VAS. J. Appl. Meteor.,31, 370–385.

  • Minnis, P., D. F. Young, K. Sassen, J. M. Alvarez, and C. J. Grund, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data. Mon. Wea. Rev.,118, 2402–2425.

  • Platt, C. M. R., 1979: Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements. J. Appl. Meteor.,18, 1130–1143.

  • Platt, C. M. R., J. C. Scott, and A. C. Dilley, 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci.,44, 729–747.

  • Prins, E. M., and W. P. Menzel, 1992: Geostationary satellite estimation of biomass burning in South America. Int. J. Remote Sens.,13, 2783–2799.

  • Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate,6, 2341–2369.

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from the ISCCP. Bull. Amer. Meteor. Soc.,80, 2261–2287.

  • Schreiner, A. J., D. A. Unger, W. P. Menzel, G. P. Ellrod, K. I. Strabala, and J. L. Pellet, 1993: A comparison of ground and satellite observations of cloud cover. Bull. Amer. Meteor. Soc.,74, 1851– 1861.

  • Smith, W. L., and C. M. R. Platt, 1978: Comparison of satellite-deduced cloud heights with indications from radiosonde and ground-based laser measurements. J. Appl. Meteor.,17, 1796– 1802.

  • Smith, W. L., and Coauthors, 1981:First sounding results from VAS-D. Bull. Amer. Meteor. Soc.,62, 232–236.

  • Stowe, L. L., R. M. Carey, and P. Pellegrino, 1992: Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys. Res. Lett.,19, 159–162.

  • Susskind, J. D., P. Piraino, L. Rokke, L. Iredell, and A. Mehta, 1997:Characteristics of the TOVS Pathfinder Path A dataset. Bull. Amer. Meteor. Soc.,78, 1449–1472.

  • Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens, 1996: A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res.,101, 29407–29429.

  • Wielicki, B. A., and J. A. Coakley, 1981: Cloud retrieval using infrared sounder data: Error analysis. J. Appl. Meteor.,20, 157– 169.

  • Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to Planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc.,76, 2125–2153.

  • Wylie, D. P., and W. P. Menzel, 1989: Two years of cloud cover statistics using VAS. J. Climate,2, 380–392.

  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate,12, 170–184.

  • Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate,7, 1972– 1986.

  • Wylie, D. P., P. Piironen, W. Wolf, and E. Eloranta, 1995: Understanding satellite cirrus cloud climatologies with calibrated lidar optical depths. J. Atmos. Sci.,52, 4327–4343.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 660 479 32
PDF Downloads 64 29 0