Sensitivity Analysis of Polarimetric Variables at a 5-cm Wavelength in Rain

D. S. Zrnić NOAA Ocean and Atmospheric Research, National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by D. S. Zrnić in
Current site
Google Scholar
PubMed
Close
,
T. D. Keenan Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by T. D. Keenan in
Current site
Google Scholar
PubMed
Close
,
L. D. Carey Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by L. D. Carey in
Current site
Google Scholar
PubMed
Close
, and
P. May Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by P. May in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sensitivity of 5-cm-wavelength polarimetric radar measurements to raindrop size and distribution is investigated. At this wavelength, resonance occurs for sizes larger than about 5 mm, and therefore several polarimetric variables exhibit nonmonotone dependence on the drop diameter. The resonance effect is examined for temperatures of 0°, 10°, 20°, and 30°C. Through use of truncated gamma distributions (parameterized as a function of rain rate from the Maritime Continent Thunderstorm Experiment), and truncated Marshall–Palmer distributions, the influence of the upper tail of the drop size distribution is brought out. This poorly documented region of sizes can have a significant effect on some polarimetric variables. These simulations are extended further to include estimates of rain rate from the reflectivity factor Z, the specific differential phase KDP, the combined use of KDP and differential reflectivity ZDR, and the combined use of Z and ZDR.

Corresponding author address: Dr. D. S. Zrnić, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.

Abstract

Sensitivity of 5-cm-wavelength polarimetric radar measurements to raindrop size and distribution is investigated. At this wavelength, resonance occurs for sizes larger than about 5 mm, and therefore several polarimetric variables exhibit nonmonotone dependence on the drop diameter. The resonance effect is examined for temperatures of 0°, 10°, 20°, and 30°C. Through use of truncated gamma distributions (parameterized as a function of rain rate from the Maritime Continent Thunderstorm Experiment), and truncated Marshall–Palmer distributions, the influence of the upper tail of the drop size distribution is brought out. This poorly documented region of sizes can have a significant effect on some polarimetric variables. These simulations are extended further to include estimates of rain rate from the reflectivity factor Z, the specific differential phase KDP, the combined use of KDP and differential reflectivity ZDR, and the combined use of Z and ZDR.

Corresponding author address: Dr. D. S. Zrnić, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.

Save
  • Aubagnac, J. P., and D. S. Zrnić, 1995: Identification and quantification of hydrometeors in a supercell storm using radar polarimetry. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 105–107.

  • Aydin, K., and V. Giridhar, 1992: C-band dual-polarization radar observables in rain. J. Atmos. Oceanic Technol.,9, 383–390.

  • Aydin, K., Y. Lure, and T. A. Seliga, 1990: Polarimetric radar measurements of rainfall compared with ground-based rain gauges. IEEE Trans. Geosci. Remote Sens.,28, 443–449.

  • Aydin, K., V. N. Bringi, and L. Liu, 1995: Rain-rate estimation in the presence of hail using S-band specific differential phase and other radar parameters. J. Appl. Meteor.,34, 404–410.

  • Balakrishnan, N., and D. S. Zrnić, 1990: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci.,47, 565–583.

  • Barber, P., and C. Yeh, 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt.,14, 2864–2872.

  • Blackman, M., and A. J. Illingworth, 1993: Differential phase measurement of precipitation. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 745–747.

  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol.,7, 829–840.

  • Bringi, V. N., V. Chandrasekar, P. Meischner, J. Hubbert, and Y. Golestani, 1991: Polarimetric radar signatures of precipitation at S and C bands. IEE Proc. F,38, 109–119.

  • Carey, L. D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan, 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor.,39, 1405–1433.

  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić, 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol.,17, 257–278.

  • Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea. Forecasting,13, 377–395.

  • Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1996: Operational monitoring of rainfall over the Arno River basin using dual-polarized radar and rain gauges. J. Appl. Meteor.,35, 1221– 1230.

  • Höller, H., 1995: Radar-derived mass-concentrations of hydrometeors for cloud model retrievals. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 453–454.

  • Höller, H., V. N. Bringi, J. Hubert, M. Hagen, and P. F. Meischner, 1994:Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci.,51, 2500–2522.

  • Jameson, A. R., 1991a: A comparison of microwave techniques for measuring rainfall. J. Appl. Meteor.,30, 32–54.

  • Jameson, A. R., 1991b: Polarization radar measurements in rain at 5 and 9 GHz. J. Appl. Meteor.,30, 1500–1513.

  • Joss, J., and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci.,26, 566–569.

  • Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc.,118, 283–326.

  • Keenan, T. D., and Coauthors, 1994: Science plan—Maritime Continent Thunderstorm Experiment. BMRC Research Rep. 44, 61 pp. [Available from BMRC, P.O. Box 1289K, Melbourne, Victoria 3001, Australia.].

  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol.,15, 871–886.

  • Marshall, J. S., and W. Palmer, 1948: The distribution of raindrops with size. J. Meteor.,5, 165–166.

  • May, P., T. D. Keenan, D. Zrnić, L. Carey, and S. Rutledge, 1999: Polarimetric radar measurements of tropical rain at a 5-cm wavelength. J. Appl. Meteor.,38, 750–765.

  • Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc.,96, 247– 256.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 955 pp.

  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci.,41, 381–388.

  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt.,11, 1836–1844.

  • Ryzhkov, A. V., and D. S. Zrnić, 1994: Precipitation observed in Oklahoma mesoscale convective systems with a polarimetric radar. J. Appl. Meteor.,33, 455–464.

  • Ryzhkov, A. V., and D. S. Zrnić, 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor.,34, 2121–2134.

  • Ryzhkov, A. V., and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor.,35, 2080–2090.

  • Ryzhkov, A. V., R. Lopez, R. Fulton, D. Zrnić, T. Schuur, and Y. Liu, 1999: Hydrometeor classification with a polarimetric radar for improved rainfall measurements and detection of hail and electrically charged regions. Preprints, 29th Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 289–292.

  • Sachidananda, M., and D. S. Zrnić, 1986: Differential propagation phase shift and rainfall rate estimation. Radio Sci.,21, 235–247.

  • Sachidananda, M., and D. S. Zrnić, 1987: Rain-rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol.,4, 588–598.

  • Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci.,52, 1070–1083.

  • Scarchilli, G., E. Gorgucci, V. Chandrasekar, and T. E. Seliga, 1993:Rainfall estimation using polarimetric techniques at C-band frequencies. J. Appl. Meteor.,32, 1150–1160.

  • Schuur, T. J., A. Ryzhkov, D. S. Zrnić, and M. Schonhuber, 1999: Drop size distributions measured by a 2D video disdrometer. Comparison with dual-polarization radar data. Preprints, 29th Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 655–658.

  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of the radar reflectivity at orthogonal polarizations for measuring precipitation. J. Appl. Meteor.,15, 69–76.

  • Sheppard, B. E., 1990: Effect of irregularities in the diameter classification of raindrops by the Joss–Waldvogel disdrometer. J. Atmos. Oceanic Technol.,7, 180–183.

  • Straka, J. M., and D. S. Zrnić, 1993: An algorithm to deduce hydrometeor types and contents from multi-parameter radar data. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–515.

  • Szumowski, M. J., R. Rauber, H. T. Ochs III, and K. V. Beard, 1998:The microphysical structure and evolution of Hawaiian rainband clouds. Part II: Aircraft measurements within rainbands containing high reflectivity cores. J. Atmos. Sci.,55, 208–226.

  • Takahashi, T., 1990: Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett.,17, 2381–2384.

  • Tan, J., A. R. Holt, A. Hendry, and D. H. O. Bebbington, 1991: Extracting rainfall rates from X-band CDR radar data by using differential propagation phase shift. J. Atmos. Oceanic Technol.,8, 790–801.

  • Tokay, A., D. A. Short, and B. Fisher, 1995: Convective vs. stratiform precipitation classification from surface measured drop size distributions at Darwin, Australia, and Kapingamarangi atoll. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 690–693.

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor.,22, 1764– 1775.

  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc.,80, 381–388.

  • Zrnić, D. S., 1996: Weather radar polarimetry—trends toward operational applications. Bull. Amer. Meteor. Soc.,77, 1529–1534.

  • Zrnić, D. S., and A. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol.,13, 454– 464.

  • Zrnić, D. S., and A. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc.,80, 389–406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1120 798 49
PDF Downloads 141 22 5