Retrieving the Clear-Sky Vertical Longwave Radiative Budget from TOVS: Comparison of a Neural Network–Based Retrieval and a Method UsingGeophysical Parameters

F. Chevallier Laboratoire de Météorologie Dynamique du CNRS, &Eacute℅le Polytechnique, Palaiseau, France

Search for other papers by F. Chevallier in
Current site
Google Scholar
PubMed
Close
,
F. Chéruy Laboratoire de Météorologie Dynamique du CNRS, &Eacute℅le Polytechnique, Palaiseau, France

Search for other papers by F. Chéruy in
Current site
Google Scholar
PubMed
Close
,
R. Armante Laboratoire de Météorologie Dynamique du CNRS, &Eacute℅le Polytechnique, Palaiseau, France

Search for other papers by R. Armante in
Current site
Google Scholar
PubMed
Close
,
C. J. Stubenrauch Laboratoire de Météorologie Dynamique du CNRS, &Eacute℅le Polytechnique, Palaiseau, France

Search for other papers by C. J. Stubenrauch in
Current site
Google Scholar
PubMed
Close
, and
N. A. Scott Laboratoire de Météorologie Dynamique du CNRS, &Eacute℅le Polytechnique, Palaiseau, France

Search for other papers by N. A. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

At a time when a new generation of satellite vertical sounders is going to be launched (including the Infrared Atmospheric Sounder Interferometer and Advanced Infrared Radiometric Sounder instruments), this paper assesses the possibilities of retrieving the vertical profiles of longwave clear-sky fluxes and cooling rates from the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) radiometers aboard the polar-orbiting National Oceanic and Atmospheric Administration satellites since 1979. It focuses on two different methodologies that have been developed at Laboratoire de Météorologie Dynamique (France). The first one uses a neural network approach for the parameterization of the links between the TOVS radiances and the longwave fluxes. The second one combines the geophysical variables retrieved by the Improved Initialization Inversion method and a forward radiative transfer model used in atmospheric general circulation models. The accuracy of these two methods is evaluated using both theoretical studies and comparisons with global observations.

* Current affiliation: European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, United Kingdom.

+ Current affiliation: Laboratoire de Météorologie Dynamique, Paris, France.

Corresponding author address: F. Chevallier, ECMWF, Shinfield Park, Reading, Berkshire RG29AX, United Kingdom.

Abstract

At a time when a new generation of satellite vertical sounders is going to be launched (including the Infrared Atmospheric Sounder Interferometer and Advanced Infrared Radiometric Sounder instruments), this paper assesses the possibilities of retrieving the vertical profiles of longwave clear-sky fluxes and cooling rates from the Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) radiometers aboard the polar-orbiting National Oceanic and Atmospheric Administration satellites since 1979. It focuses on two different methodologies that have been developed at Laboratoire de Météorologie Dynamique (France). The first one uses a neural network approach for the parameterization of the links between the TOVS radiances and the longwave fluxes. The second one combines the geophysical variables retrieved by the Improved Initialization Inversion method and a forward radiative transfer model used in atmospheric general circulation models. The accuracy of these two methods is evaluated using both theoretical studies and comparisons with global observations.

* Current affiliation: European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, United Kingdom.

+ Current affiliation: Laboratoire de Météorologie Dynamique, Paris, France.

Corresponding author address: F. Chevallier, ECMWF, Shinfield Park, Reading, Berkshire RG29AX, United Kingdom.

Save
  • Achard, V., 1991: Trois problèmes clés de l'analyse 3D de la structure thermodynamique de l’atmosphère par satellite: Mesure du contenu en ozone; classification des masses d’air; modélisation hyper rapide du transfert radiatif (Three key problems of the atmosphere thermodynamical structure 3D analysis from satellite observations: Measurement of the ozone content; air-mass classification; very fast modeling of the radiative transfer). Ph.D. thesis, Université Paris VI, 168 pp. [Available from LMD, Ecole Polytechnique, 91128 Palaiseau Cedex, France.].

  • Alishouse, J. C., S. Snyder, J. Vongsathorn, and R. R. Ferraro, 1990:Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens.,28, 811–816.

  • Allan, R. P., K. P. Shine, A. Slingo, and A. Pamment, 1999: The dependence of clear-sky outgoing long-wave radiation on surface temperature and relative humidity. Quart. J. Roy. Meteor. Soc.,125, 2103–2126.

  • Andersson, E., A. Hollingsworth, G. A. Kelly, P. Lönnberg, J. Pailleux, and Z. Zhang, 1991: Global observing system experiments on operational statistical retrievals of satellite sounding data. Mon. Wea. Rev.,119, 1851–1864.

  • Baer, F., N. Arsky, and R. G. Elligson, 1996: Intercomparison of heating rates generated by global climate model longwave radiation codes. J. Geophys. Res.,101, 26589–26603.

  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc.,65, 1170–1185.

  • Chaboureau, J.-P., 1997: Climatologie de la vapeur d’eau atmosphérique à l’échelle globale à l’aide de sondeurs satellitaires (Climatology of the atmospheric water vapor on global scale from satellite sounders). Ph.D. thesis, École Polytechnique, 192 pp. [Available from LMD, Ecole Polytechnique, 91128 Palaiseau Cedex, France.].

  • Chaboureau, J.-P., A. Chédin, and N. A. Scott, 1998: Remote sensing of the vertical distribution of atmospheric water vapor from the TOVS observations. Method and validation. J. Geophys. Res.,103, 8743–8752.

  • Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier, 1985: The Improved Initialization Inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series. J. Climate Appl. Meteor.,24, 128–143.

  • Chéruy, F., and F. Chevallier, 2000: Regional and seasonal variations of the clear-sky atmospheric longwave cooling over tropical oceans. J. Climate,13, 2863–2875.

  • Chéruy, F., N. A. Scott, C. Chedin, J.-P. Chaboureau, and C. Stubenrauch, 1994: Coupling the thermodynamic vertical structure of the earth-atmosphere system derived from spaceborne observations with a radiative transfer model for the study of the radiative budget variability. Preprints, Seventh Conf. on Satellite Meteorology and Oceanography, Monterey, CA, Amer. Meteor. Soc., 226–228.

  • Chéruy, F., N. A. Scott, R. Armante, B. Tournier, and A. Chédin, 1995: Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared. J. Quant. Spectrosc. Radiat. Transfer,53, 597–612.

  • Chéruy, F., F. Chevallier, J.-J. Morcrette, N. A. Scott, and A. Chédin, 1996a:A fast method using neural networks for computing the vertical distribution of the thermal component of the Earth radiative budget (in French). C. R. Acad. Sci., Ser. II,322, 665–672.

  • Chéruy, F., F. Chevallier, N. A. Scott, and A. Chédin, 1996b: Use of the vertical sounding in the infrared for the retrieval and the analysis of the longwave radiative budget. IRS ’96: Current Problems in Atmospheric Radiation, W. L. Smith and K. Stamnes, Eds., A. Deepak, 745–748.

  • Chevallier, F., 1998: La modélisation du transfert radiatif à des fins climatiques: Une nouvelle approche fondée sur les réseaux de neurones artificiels (The modeling of radiative transfer for climatic purposes: A new approach based on artificial neural networks). Ph.D. thesis, Université Paris VII, 230 pp. [Available from LMD, Ecole Polytechnique, 91128 Palaiseau Cedex, France.].

  • Chevallier, F., F. Chéruy, N. A. Scott, and A. Chédin, 1998: A neural network approach for a fast and accurate computation of longwave radiative budget. J. Appl. Meteor.,37, 1385–1397.

  • Collins, W. D., and A. K. Inamdar, 1995: Validation of clear-sky fluxes for tropical oceans from the Earth Radiation Budget Experiment. J. Climate,8, 569–578.

  • Darnell, W. L., S. K. Gupta, and W. F. Staylor, 1986: Downward longwave surface radiation from sun-synchronous satellite data:Validation of methodology. J. Climate Appl. Meteor.,25, 1012– 1021.

  • Ellingson, R. G., and J. Ellis, 1991: The intercomparison of radiation codes used in climate models: Longwave results. J. Geophys. Res.,96, 8929–8953.

  • Ellingson, R. G., D. Yanuk, H. T. Lee, and A. Gruber, 1989: A technique for estimating outgoing longwave radiation from HIRS radiance observations. J. Atmos. Oceanic Technol.,6, 706–711.

  • Ellingson, R. G., D. Yanuk, A. Gruber, and A. J. Miller, 1994: Development and application of remote sensing of longwave cooling from the NOAA polar orbiting satellites. Photogramm. Eng. Remote Sens.,60, 307–316.

  • Escobar-Munoz, J., A. Chédin, F. Chéruy, and N. A. Scott, 1993: Réseaux de neurones multicouches pour la restitution de variables thermodynamiques atmosphériques à l’aide de sondeurs verticaux sa tellitaires (Multilayer neural networks for the retrieval of atmospheric thermodynamical variables from satellite vertical sounders). C. R. Acad. Sci., Ser. II,317, 911–918.

  • Gruber, A., and J. S. Winston, 1978: Earth–atmosphere radiative heating based on NOAA scanning radiometer measurements. Bull. Amer. Meteor. Soc.,59, 1570–1573.

  • Gupta, S. K., 1989: A parameterization for longwave surface radiation from sun-synchronous satellite data. J. Climate,2, 305–320.

  • Gupta, S. K., A. C. Wilber, W. L. Darnell, and J. T. Suttles, 1992: Longwave surface radiation over the globe from satellite data: An error analysis. Int. J. Remote Sens.,14, 95–114.

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res.,95, 18687–18703.

  • Hartmann, D. L., and D. Doelling, 1991: On the net radiative effectivness of clouds. J. Geophys. Res.,96, 869–891.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate,5, 1281–1304.

  • Holton, J. R., 1991: An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 391 pp.

  • Luers, J. K., and R. E. Eskridge, 1998: Use of radiosonde temperature data in climate studies. J. Climate,11, 1002–1019.

  • McMillin, L., M. Uddstrom, and A. Coletti, 1992: A procedure for correcting radiosonde reports for radiation errors. J. Atmos. Oceanic Technol.,9, 801–811.

  • McPeters, R. D., D. F. Heath, and P. K. Bhartia, 1984: Average ozone profiles for 1979 from the NIMBUS-7 SBUV instrument. J. Geophys. Res.,89, 5199–5214.

  • Mehta, A., and J. Susskind, 1999: Outgoing longwave radiation from the TOVS Pathfinder A dataset. J. Geophys. Res.,104, 12193– 12212.

  • Morcrette, J.-J., 1991: Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forcasting system. J. Geophys. Res.,96, 9121–9132.

  • Moulinier, P., 1983: Analyse statistique d’un vaste échantillonnage de situations atmosphériques sur l&rsquosemble du globe (Statistical analysis of a large global sample of atmospheric profiles). LMD Internal Note 123, 30 pp. [Available from LMD, Ecole Polytechnique, 91128 Palaiseau Cedex, France.].

  • Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci.,52, 1784–1806.

  • Poore, K. D., J. Wang, and W. B. Rossow, 1995: Cloud layer thickness from a combination of surface and upper air observations. J. Climate,8, 550–568.

  • Raschke, E., T. H. Vonder Haar, W. R. Bandeen, and M. Pasternak, 1973: The annual radiation balance of the earth-atmosphere system during 1969–70 from Nimbus 3 measurements. J. Atmos. Sci.,30, 341–364.

  • Rieu, H., J. Escobar-Munoz, N. A. Scott, and A. Chédin, 1996: SSM/T forward modelling using neural networks. J. Quant. Spectrosc. Radiat. Transfer,56, 821–833.

  • Rossow, W. B., and Y.-C. Zhang, 1995: Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP datasets: 2. Validation and first results. J. Geophys. Res.,100, 1167–1197.

  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1, D. E. Rumelhart and J. L. McClelland, Eds., The MIT Press, 318–362.

  • Scott, N. A., and A. Chédin, 1981: A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteor.,20, 802–812.

  • Scott, N. A., and Coauthors, 1999: Characteristics of the TOVS Pathfinder Path-B dataset. Bull. Amer. Meteor. Soc.,80, 2679–2701.

  • Sinha, A., and J. E. Harries, 1997: The earth’s clear-sky radiation budget and water vapor absorption in the far infrared. J. Climate,10, 1601–1614.

  • Slingo, A., and M. J. Webb, 1992: Simulation of clear-sky outgoing longwave radiation over the oceans using operational analyses. Quart. J. Roy. Meteor. Soc.,118, 1117–1144.

  • Slingo, A., J. A. Pamment, and M. J. Webb, 1998: A 15-year simulation of the clear-sky greenhouse effect using the ECMWF reanalyses:Fluxes and comparisons with ERBE. J. Climate,11, 690–708.

  • Smith, G. L., R. N. Green, E. Raschke, L. M. Avis, J. T. Suttles, B. A. Wielicki, and R. Davies, 1986: Inversion methods for satellite studies of the Earth radiation budget: Development of algorithms for the ERBE mission. Rev. Geophys.,24, 407–421.

  • Smith, W. L., H. M. Woolf, C. M. Hayden, D. Q. Wark, and L. M. McMillin, 1979: The TIROS–N operational vertical sounder. Bull. Amer. Meteor. Soc.,60, 1177–1187.

  • Soden, B. J., and F. P. Bretherton, 1996: Interpretation of TOVS water vapor radiances in terms of layer-average relative humidities: Method and climatology for the upper, middle, and lower troposphere. J. Geophys. Res.,101, 9333–9343.

  • Stephens, G. L., D. L. Jackson, and J. J. Bates, 1994: A comparison of SSM/I and TOVS column water vapor data over the global oceans. Meteor. Atmos. Phys.,54, 183–201.

  • Stubenrauch, C. J., W. B. Rossow, F. Chéruy, A. Chédin, and N. A. Scott, 1999a: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters. J. Climate,12, 2189–2213.

  • Stubenrauch, C. J., A. Chédin, R. Armante, and N. A. Scott, 1999b: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part II: A new approach for cloud parameter determination in the 3I algorithms. J. Climate,12, 2214–2223.

  • Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chédin, 1999c: Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part III: Spatial heterogeneity and radiative effects. J. Climate,12, 3419– 3442.

  • Susskind, J., P. Piraino, L. Rokke, L. Iredell, and A. Mehta, 1997: Characteristics of the TOVS Pathfinder Path A dataset. Bull. Amer. Meteor. Soc.,78, 1449–1472.

  • Tarpley, J. D., 1979: Estimating incident solar radiation from geostationary data. J. Appl. Meteor.,18, 1172–1181.

  • Thépaut, J.-N., and P. Moll, 1990: Variational inversion of simulated TOVS radiances using the adjoint techniques. Quart. J. Roy. Meteor. Soc.,116, 1425–1448.

  • Tournier, B., R. Armante, and N. A. Scott, 1995: Stransac-93, 4A-93. Développement et validation des nouvelles versions des codes de transfert radiatif pour application au projet IASI (Stransac-93, 4A-93. Development and validation of the new versions of the radiative transfer codes for application to the IASI project). LMD Internal Note 201, 43 pp. [Available from LMD, Ecole Polytechnique, 91128 Palaiseau Cedex, France.].

  • Uddstrom, M. J., and L. M. McMillin, 1993: A collocation archive of radiosonde and satellite data: 1979 to 1993. Users guide. NOAA Tech. Memo. NESDIS, 22 pp. [Available from NOAA/NESDIS, Washington, DC 20233.].

  • Wahiche, C., 1984: Contribution au problème; de la détermination de paramètres météorologiques et climatologiques à partir des données fournies par les satellites de la série TIROS-N, impact de la couverture nuageuse (Contribution to the problem of the retrieval of meteorological and climatological parameters from satellite data from the TIROS-N series: Impact of the cloud cover). Ph. D. thesis. Université Paris VII, 168 pp. [Available from LMD, École Polytechnique, 91128 Palaiseau Cedex, France.].

  • Wielicki, B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to Planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc.,76, 2125–2153.

  • Wittmeyer, I. L., and T. H. Vonder Haar, 1994: Analysis of the global ISCCP TOVS water vapor climatology. J. Climate,7, 325–333.

  • Wu, X., J. J. Bates, and S. J. S. Khalsa, 1993: A climatology of the water vapor band brightness temperatures from NOAA operational satellites. J. Climate,6, 1282–1300.

  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP datasets: 1. Method and sensitivity to input data uncertainties. J. Geophys. Res.,100, 1149–1165.

  • Zhong, W., and J. D. Haigh, 1995: Improved broadband emissivity parameterization for water vapor cooling rate calculations. J. Atmos. Sci.,52, 124–138.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 548 219 29
PDF Downloads 82 22 0