• Asrar, G. and J. Dozier. 1994. EOS: Science Strategy for the Earth Observing System. American Institute of Physics, 119 pp.

  • Bankert, R. L. 1994. Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. J. Appl. Meteor 33:909918.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., E. E. Clothiaux, T. P. Ackerman, R. T. Marchand, Z. Li, and Q. Fu. 1999. Overlapping cloud: What radars give and what models require. Proc. Ninth ARM Science Team Meeting, San Antonio, TX, U.S. Department of Energy. [Available online at http://www.arm.gov/docs/documents/technical/conference.html.].

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., A. Leetmaa, V. E. Kousky, R. E. Livezey, E. A. O'Lenic, H. Van den Dool, A. J. Wagner, and D. A. Unger. 1999:. NCEP forecasts of the El Niño of 1997–98 and its U.S. impacts. Bull. Amer. Meteor. Soc 80:18291852.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, J. D. Spinhirne, D. D. Turner, and C. J. Flynn. 1998. Operational cloud boundary detection and analysis from micropulse lidar data. Proc. Eighth ARM Science Team Meeting, Tucson, AZ, U.S. Department of Energy, 119–122.

    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang. 2000. Cloud type radiative effects from the International Satellite Cloud Climatology Project. Preprints, 11th Symp. on Global Change Studies, Long Beach, CA, Amer. Meteor. Soc., 86–89.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., G. G. Mace, T. P. Ackerman, T. J. Kane, J. D. Spinhirne, and V. S. Scott. 1998. An automated algorithm for detection of hydrometer returns in micropulse lidar data. J. Atmos. Oceanic Technol 15:10351042.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner. 2000. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor 39:645665.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E. and M. S. O'Malley. 1999. Estimating cloud type from pyranometer observations. J. Appl. Meteor 38:132141.

  • Eberhard, W. L. 1986. Cloud signals from lidar and rotating beam ceilometer compared with pilot ceiling. J. Atmos. Oceanic Technol 3:499512.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J., B. Forest, S. Bisson, and D. Turner. 1998. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt 37:49794990.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen. 1992. The effect of cloud type on Earth's energy balance: Global analysis. J. Climate 5:12811304.

    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., S. K. Krueger, and G. G. Mace. 2000. A cloud climatology of the southern Great Plains ARM CART site. J. Climate 13:17621775.

    • Search Google Scholar
    • Export Citation
  • Lohmeier, S. P., S. M. Sekelsky, J. M. Firda, G. A. Sadowy, and R. E. McIntosh. 1997. Classification of particles in stratiform clouds using the 33 and 95 GHz polarimetric cloud profiling radar system (CPRS). IEEE Trans. Geosci. Remote Sens 37:256270.

    • Search Google Scholar
    • Export Citation
  • Luo, G., P. A. Davis, L. L. Stowe, and E. P. McClain. 1995. A pixel-scale algorithm of cloud type, layer, and amount for AVHRR data. Part I: nighttime. J. Atmos. Oceanic Technol 12:10131037.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G. and K. Sassen. 2000. A constrained algorithm for retrieval of stratocumulus cloud properties using solar radiation, microwave radiometer, and millimeter cloud radar data. J. Geophys. Res 105:2909929108.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin. 1999. The IRI seasonal climate prediction system and the 1997/1998 El Niño event. Bull. Amer. Meteor. Soc 80:18531873.

    • Search Google Scholar
    • Export Citation
  • Moran, J. M., M. D. Morgan, and P. M. Pauley. 1997. Meteorology: The Atmosphere and the Science of Weather. Prentice Hall, 530 pp.

  • Pal, S. R., W. Steinbrecht, and A. I. Carswell. 1992. Automated method for lidar determination of cloud base height and vertical extent. Appl. Opt 31:14881494.

    • Search Google Scholar
    • Export Citation
  • Parker, S. P. Ed.,. 1988. Meteorology Source Book. McGraw-Hill, 304 pp.

  • Penaloza, M. A. and R. M. Welch. 1996. Feature selection for classification of polar regions using a fuzzy expert system. Remote Sens. Environ 58:81100.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R. and Coauthors,. 1994. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research. Bull. Amer. Meteor. Soc 75:16351645.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B. and R. A. Schiffer. 1999. Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc 80:22612286.

  • Sassen, K. 1984. Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements. J. Climate Appl. Meteor 23:568583.

    • Search Google Scholar
    • Export Citation
  • Sassen, K. 1991. The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc 72:18481866.

    • Search Google Scholar
    • Export Citation
  • Sassen, K. and B. S. Cho. 1992. Subvisual–thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor 31:12751285.

    • Search Google Scholar
    • Export Citation
  • Sassen, K. and H. Zhao. 1993. Supercooled liquid water clouds in Utah winter mountain storms: Cloud-seeding implications of a remote-sensing dataset. J. Appl. Meteor 32:15481558.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., H. Zhao, and G. C. Dodd. 1992. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds. Appl. Opt 31:29142923.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., J. M. Comstock, Z. Wang, and G. G. Mace. 2001. Cloud and aerosol research capabilities at FARS: The Facility for Atmospheric Remote Sensing. Bull. Amer. Meteor. Soc.,82, 1119–1138.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M. and S. E. Schwartz. 1994. The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc 75:12011221.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., W. B. Rossow, F. Chéruy, A. Chédin, and N. A. Scott. 1999. Clouds as seen by satellite sonders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters. J. Climate 12:21892213.

    • Search Google Scholar
    • Export Citation
  • Tovinkere, V. R., M. Penaloza, A. Logar, J. Lee, R. C. Weger, T. A. Berendes, and R. M. Welch. 1993. An intercomparison of artificial intelligence approaches for polar scene identification. J. Geophys. Res 98:50015016.

    • Search Google Scholar
    • Export Citation
  • Uddstrom, M. J. and W. R. Gray. 1996. Satellite cloud classification and rain-rate estimation using multispectral radiances and measures of spatial texture. J. Appl. Meteor 35:839858.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., E. E. Clothiaux, T. P. Ackerman, J. M. Intrieri, and W. L. Eberhand. 1995. Cloud boundary statistics during FIRE II. J. Atmos. Sci 52:42764284.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens. 1996. A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res 101:2940729429.

    • Search Google Scholar
    • Export Citation
  • Wang, Z. 2000. Cloud property retrieval using combined ground-based remote sensors. Ph.D. dissertation, University of Utah, 191 pp.

  • Welch, R. M., S. K. Sengupta, A. K. Goroch, P. Rabindra, N. Rangaraj, and M. S. Navar. 1992. Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods. J. Appl. Meteor 31:405420.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage. 1995. Classification of precipitating clouds in the Tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol 12:9961012.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M. and M. A. Vaughan. 1994. Vertical distribution of clouds over Hampton, Virginia, observed by lidar under the ECLIPS and FIRE ETO programs. Atmos. Res 34:117133.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1956. International Cloud Atlas: Abridged atlas. World Meteorological Organization, 62 pp. and 72 plates.

    • Search Google Scholar
    • Export Citation
  • Young, S. A. 1995. Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt 34:70197031.

  • Young, S. A., C. M. R. Platt, R. T. Austin, and G. R. Patterson. 2000. Optical properties and phase of some midlatitude, midlevel clouds in ECLIPS. J. Appl. Meteor 39:135153.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1566 842 69
PDF Downloads 770 350 19

Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors

Zhien WangDepartment of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Zhien Wang in
Current site
Google Scholar
PubMed
Close
and
Kenneth SassenDepartment of Meteorology, University of Utah, Salt Lake City, Utah

Search for other papers by Kenneth Sassen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A cloud detection algorithm based on ground-based remote sensors has been developed that can differentiate among various atmospheric targets such as ice and water clouds, virga, precipitation, and aerosol layers. Standard cloud type and macrophysical properties are identified by combining polarization lidar, millimeter-wave radar, infrared radiometer, and dual-channel microwave radiometer measurements. These algorithms are applied to measurements collected during 1998 from the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed site in north-central Oklahoma. The statistical properties of clouds for this year are presented, illustrating how extended-time remote sensing datasets can be converted to cloud properties of concern to climate research.

Corresponding author address: Zhien Wang, University of Utah, 135 S 1460 E 819 WBB, Salt Lake City, UT 84112-0110. zwang@met.utah.edu

Abstract

A cloud detection algorithm based on ground-based remote sensors has been developed that can differentiate among various atmospheric targets such as ice and water clouds, virga, precipitation, and aerosol layers. Standard cloud type and macrophysical properties are identified by combining polarization lidar, millimeter-wave radar, infrared radiometer, and dual-channel microwave radiometer measurements. These algorithms are applied to measurements collected during 1998 from the Atmospheric Radiation Measurement Program Cloud and Radiation Test Bed site in north-central Oklahoma. The statistical properties of clouds for this year are presented, illustrating how extended-time remote sensing datasets can be converted to cloud properties of concern to climate research.

Corresponding author address: Zhien Wang, University of Utah, 135 S 1460 E 819 WBB, Salt Lake City, UT 84112-0110. zwang@met.utah.edu

Save