• Andsager, K., K. V. Beard, and N. F. Laird. 1999. Laboratory measurements of axis ratios for large raindrops. J. Atmos. Sci 56:26732683.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon. 1973. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys 11:135.

    • Search Google Scholar
    • Export Citation
  • Aydin, K. H. and V. Giridhar. 1992. C-band dual-polarization radar observables in rain. J. Atmos. Oceanic Technol 9:383390.

  • Balakrishnan, N. and D. S. Zrnić. 1990. Estimation of rain and hail rates in mixed phase precipitation. J. Atmos. Sci 47:565583.

  • Beard, K. V., H. T. Ochs, and R. J. Kubesh. 1989. Natural oscillations of small raindrops. Nature 342:408410.

  • Blanchard, D. C. 1950. The behavior of water drops at terminal velocity in air. Trans. Amer. Geophys. Union 31:836842.

  • Braham, R. R. Jr . 1964. What is the role of ice in summer rain-showers? J. Atmos. Sci 21:640645.

  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić. 1990. An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol 7:829840.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D. and S. A. Rutledge. 2000. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev 128:26872710.

    • Search Google Scholar
    • Export Citation
  • Chong, S. L. and C. S. Chen. 1974. Water shells on ice pellets and hailstones. J. Atmos. Sci 31:13841391.

  • Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May. 2000. Drop size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor 39:760777.

    • Search Google Scholar
    • Export Citation
  • Currier, P. E., S. K. Avery, B. B. Balsley, K. S. Gage, and W. L. Ecklund. 1992. Combined use of 50 MHz and 915 MHz wind profilers in the estimation of raindrop size distributions. Geophys. Res. Lett 19:10171020.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., A. V. Ryzhkov, and D. S. Zrnić. 1999. Areal rainfall estimation using conventional and polarimetric radar methods. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 293–296.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E. 1988. Measuring drop-size distributions in clouds with clear air sensing radar. J. Atmos. Oceanic Technol 5:640649.

  • Houze, R. A. Jr . 1993. Cloud Physics, Academic Press,. 573 pp.

  • Jameson, A. R. 1989. The interpretation and meteorological application of radar backscatter amplitude ratios at linear polarizations. J. Atmos. Oceanic Technol 6:908919.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R. 1991. Polarization radar measurements in rain at 5 and 9 GHz. J. Appl. Meteor 30:15001513.

  • Jameson, A. R. 1992. The effect of temperature on attenuation correction schemes in rain using polarization propagation differential phase shift. J. Appl. Meteor 31:11061118.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R. 1994. An alternative approach to estimating rainfall rate by radar using propagation differential phase shift. J. Atmos. Oceanic Technol 11:122131.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R. and E. A. Mueller. 1985. Estimation of differential phase shift from sequential orthogonal linear polarization radar measurements. J. Atmos. Oceanic Technol 2:133137.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R. and I. J. Caylor. 1994. A new approach to estimating rain water content by radar using propagation differential phase shift. J. Atmos. Oceanic Technol 11:311322.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R. and A. B. Kostinski. 2001. What is a raindrop size distribution? Bull. Amer. Meteor. Soc., 82, 1169–1177.

  • Jameson, A. R., M. J. Murphy, and E. P. Krider. 1996. Multiple parameter radar observations in isolated Florida thunderstorms during the onset of electrification. J. Appl. Meteor 35:343354.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B. and A. R. Jameson. 1982. On the melting of graupel and frozen raindrops. Preprints, Conf. on Cloud Physics, Chicago, IL, Amer. Meteor. Soc., 384–387.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz. 1998. The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol 15:871886.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., L. D. Carey, D. S. Zrnić, and P. T. May. 2001. Sensitivity of 5-cm wavelength polarimetric radar variables in rain to raindrop axial ratio and drop size distribution. J. Appl. Meteor 40:526545.

    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B. and A. R. Jameson. 2000. On the spatial distribution of cloud particles. J. Atmos. Sci 57:901915.

  • Kubesh, R. J. and K. V. Beard. 1993. Laboratory measurements of spontaneous oscillations for moderate-size raindrops. J. Atmos. Sci 50:10891098.

    • Search Google Scholar
    • Export Citation
  • Maguire, W. B. and S. K. Avery. 1994. Retrieval of raindrop size distributions using two Doppler wind profilers: Model sensitivity testing. J. Appl. Meteor 33:16231635.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. A. Kropfli, R. F. Reinking, and B. E. Martner. 1999. Prospects for measuring rainfall using propagation differential phase in X- and Ka-radar bands. J. Appl. Meteor 38:766776.

    • Search Google Scholar
    • Export Citation
  • May, P. T., A. R. Jameson, T. Keenan, P. Johnson, and W. Ecklund. 1999a. Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of sea breeze thunderstorms. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, PQ, Canada, Amer. Meteor. Soc., 247–350.

    • Search Google Scholar
    • Export Citation
  • May, P. T., T. D. Keenan, D. S. Zrnić, L. D. Carey, and S. A. Rutledge. 1999b. Polarimetric measurements of rain at a 5-cm wavelength. J. Appl. Meteor 38:750765.

    • Search Google Scholar
    • Export Citation
  • Mueller, E. A. 1984. Calculation procedures for differential propagation phase shift. Preprints, 22d Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 397–399.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R. and K. V. Beard. 1970. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc 96:247256.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, and R. A. Vincent. 1993. A general approach to the retrieval of rain-drop-size distributions from VHF wind profiler Doppler spectra: Modeling results. J. Atmos. Oceanic Technol 10:710717.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., P. T. May, R. Cifelli, S. K. Avery, C. Williams, W. L. Ecklund, and K. S. Gage. 1998. The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Oceanic Technol 15:13061319.

    • Search Google Scholar
    • Export Citation
  • Rajopadhyaya, D. K., S. K. Avery, P. T. May, and R. C. Cifelli. 1999. Comparison of precipitation estimation using single- and dual-frequency wind profilers: Simulations and experimental results. J. Atmos. Oceanic Technol 16:165173.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Prupacher. 1984. A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius >500 μm. J. Atmos. Sci 41:381388.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R. 1967. Doppler radar investigations of Hawaiian rain. Tellus 19:432455.

  • Rogers, R. R., D. Baumgardner, S. A. Ether, D. A. Carter, and W. L. Ecklund. 1993. Comparison of raindrop size distributions measured by radar wind profiler and by airplane. J. Appl. Meteor 32:694699.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M. and D. S. Zrnić. 1986. Differential propagation phase shift and rainfall rate estimation. Radio Sci 21:235247.

  • Sato, T., H. Doji, H. Iwai, and I. Kimura. 1990. Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Sci 25:961973.

    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S. and R. C. Srivastava. 1971. Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci 28:983994.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A. and V. N. Bringi. 1976. Potential use of a radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor 15:6976.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, and R. Raghavan. 1990. Multiparameter radar modeling and observations of melting ice. J. Atmos. Sci 47:549564.

    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., A. Mizutani, M. Matsuo, S. Fukao, and S. Kato. 1986:. A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol 3:623629.

    • Search Google Scholar
    • Export Citation
  • Zahrai, A. and D. S. Zrnić. 1993. The 10 cm-wavelength polarimetric weather radar at NOAA's National Severe Storms Laboratory. J. Atmos. Oceanic Technol 10:649662.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S. and A. Ryzhkov. 1996. Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol 13:454464.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S. and A. Ryzhkov. 1999. Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc 80:389406.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 67 19
PDF Downloads 96 35 1

A Comparison between Polarimetric Radar and Wind Profiler Observations of Precipitation in Tropical Showers

Peter T. MayBureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Peter T. May in
Current site
Google Scholar
PubMed
Close
,
A. R. JamesonRJH Scientific, Inc., Alexandria, Virginia

Search for other papers by A. R. Jameson in
Current site
Google Scholar
PubMed
Close
,
Thomas D. KeenanBureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Thomas D. Keenan in
Current site
Google Scholar
PubMed
Close
, and
Paul E. JohnstonCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Paul E. Johnston in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the results of an experiment that combines the data from a 5-cm-wavelength polarimetric radar and multiple-frequency wind profilers to examine the polarimetric signatures associated with the microphysical structure of several relatively shallow thunderstorms and also to examine quantitative rainfall measurements made with the polarimetric radar. These shallow storms produce considerable amounts of centimeter-sized hail. The presence and size of this hail are deduced from the wind profiler data. The melting hail particles produce a distinctive polarimetric signature with large values of differential reflectivity ZDR and suppressed values of the correlation coefficient between the signals at horizontal and vertical polarization. Comparisons between the mass-weighted mean drop diameter and differential reflectivity have been performed and show reasonable agreement with theoretical expectations, although the observed ZDR are somewhat smaller than expected. This may be associated with the theoretical assumption of the Pruppacher–Beard oblateness relationship even though there is evidence to suggest that real raindrops may be less oblate on average in convective rain. Quantitative polarimetric rainfall estimators have been compared with rainfall rates derived from the profiler drop size distribution retrievals and show reasonably good agreement when reflectivity values are matched.

Corresponding author address: P. T. May, BMRC, GPO Box 1289K, Melbourne, 3001, Victoria, Australia. p.may@bom.gov.au

Abstract

This paper describes the results of an experiment that combines the data from a 5-cm-wavelength polarimetric radar and multiple-frequency wind profilers to examine the polarimetric signatures associated with the microphysical structure of several relatively shallow thunderstorms and also to examine quantitative rainfall measurements made with the polarimetric radar. These shallow storms produce considerable amounts of centimeter-sized hail. The presence and size of this hail are deduced from the wind profiler data. The melting hail particles produce a distinctive polarimetric signature with large values of differential reflectivity ZDR and suppressed values of the correlation coefficient between the signals at horizontal and vertical polarization. Comparisons between the mass-weighted mean drop diameter and differential reflectivity have been performed and show reasonable agreement with theoretical expectations, although the observed ZDR are somewhat smaller than expected. This may be associated with the theoretical assumption of the Pruppacher–Beard oblateness relationship even though there is evidence to suggest that real raindrops may be less oblate on average in convective rain. Quantitative polarimetric rainfall estimators have been compared with rainfall rates derived from the profiler drop size distribution retrievals and show reasonably good agreement when reflectivity values are matched.

Corresponding author address: P. T. May, BMRC, GPO Box 1289K, Melbourne, 3001, Victoria, Australia. p.may@bom.gov.au

Save