Geostatistical Analysis of Orographic Rainbands

Fabien Miniscloux Laboratoire d'études des Transferts en Hydrologie et Environnement, Observatoire des Sciences de I'Univers de Grenoble, Grenoble, France

Search for other papers by Fabien Miniscloux in
Current site
Google Scholar
PubMed
Close
,
Jean Dominique Creutin Laboratoire d'études des Transferts en Hydrologie et Environnement, Observatoire des Sciences de I'Univers de Grenoble, Grenoble, France

Search for other papers by Jean Dominique Creutin in
Current site
Google Scholar
PubMed
Close
, and
Sandrine Anquetin Laboratoire d'études des Transferts en Hydrologie et Environnement, Observatoire des Sciences de I'Univers de Grenoble, Grenoble, France

Search for other papers by Sandrine Anquetin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on weather radar detection, orographic rainbands parallel to wind direction may persist for several hours over a Mediterranean mountainous region prone to stable wind and humidity conditions. A statistical analysis shows that orographic rainbands are more active and more stable over the mountains than over the lower hills. By the mean of the range–time indicator technique, the northward advection velocity of the rain cells is deduced (60 km h−1) and is slightly lower than the wind velocity (85 km h−1) measured at the high-altitude weather station (Mont Aigoual, 1565 m above mean sea level). The detailed analysis highlights that the positioning of individual orographic cells in relation to the relief is not random: they are triggered by relief shoulders on their southeast flank. Their regular spacing (typically 15 km) is responsible for the general organization of the rainbands. Rain accumulations vary from 20 to over 100 mm day−1 from the outside to the center of the rainbands.

Corresponding author address: Sandrine Anquetin, LTHE, BP 53, F-38041 Grenoble, Cedex 09, France. sandrine.anquetin@hmg.inpg.fr

Abstract

Based on weather radar detection, orographic rainbands parallel to wind direction may persist for several hours over a Mediterranean mountainous region prone to stable wind and humidity conditions. A statistical analysis shows that orographic rainbands are more active and more stable over the mountains than over the lower hills. By the mean of the range–time indicator technique, the northward advection velocity of the rain cells is deduced (60 km h−1) and is slightly lower than the wind velocity (85 km h−1) measured at the high-altitude weather station (Mont Aigoual, 1565 m above mean sea level). The detailed analysis highlights that the positioning of individual orographic cells in relation to the relief is not random: they are triggered by relief shoulders on their southeast flank. Their regular spacing (typically 15 km) is responsible for the general organization of the rainbands. Rain accumulations vary from 20 to over 100 mm day−1 from the outside to the center of the rainbands.

Corresponding author address: Sandrine Anquetin, LTHE, BP 53, F-38041 Grenoble, Cedex 09, France. sandrine.anquetin@hmg.inpg.fr

Save
  • Alpert, P. 1986. Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Climate Appl. Meteor 25:532545.

    • Search Google Scholar
    • Export Citation
  • Alpert, P. and H. Shafir. 1989. Mesoγ-scale distribution of orographic precipitation: Numerical study and comparison with precipitation derived from radar measurements. J. Appl. Meteor 28:11051117.

    • Search Google Scholar
    • Export Citation
  • Amorocho, J. and B. Wu. 1977. Mathematical models for the simulation of cyclonic storm sequences and precipitation fields. J. Hydrol 32:329345.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H. and J. D. Creutin. 1995. Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor 34:225239.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H., J. D. Creutin, G. Delrieu, and D. Faure. 1997. Use of a weather radar for the hydrology of a mountainous area. Part I: Radar measurement interpretation. J. Hydrol 193:125.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M. and R. A. Houze. 1972. Analysis of the structure of precipitation patterns in New England. J. Appl. Meteor 11:926935.

  • Banta, R. M. 1990. The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 173–228.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P. and D. P. Lettenmaier. 1993. Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev 121:11951214.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P. and R. Kuligowski. 1998,. Orographic effects during a severe wintertime rainstorm in the Appalachian Mountains. Mon. Wea. Rev 126:26482672.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T. 1965. On the low-level redistribution of atmospheric water caused by orography. Proc. Int. Conf. on Cloud Physics, Tokyo, Japan, IAMAP/WMO, 96–100.

    • Search Google Scholar
    • Export Citation
  • Binder, P. and Coauthors,. . 1995. Mesoscale Alpine Programme: Design proposal. ETH, 65 pp. [Available from MAP Data Centre, ETH, Zurich, Switzerland.].

    • Search Google Scholar
    • Export Citation
  • Bougeault, P. and Coauthors,. . 2001. The MAP special observation period. Bull. Amer. Meteor. Soc 82:433462.

  • Browning, K. A. 1980. Structure, mechanism and prediction of orographically enhanced rain in Britain. Orographic Effects in Planetary Flows, World Meteorological Organization, 85–114.

    • Search Google Scholar
    • Export Citation
  • Chua, S-H. and R. L. Bras. 1982. Optimal estimators of mean areal precipitations in regions of orographic influence. J. Hydrol 57:2348.

    • Search Google Scholar
    • Export Citation
  • Cosma, S., E. Richard, and F. Miniscloux. 2001. The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R. and R. A. Anthes. 1989. Storm and Cloud Dynamics. International Geophysics Series, Vol. 44, Academic Press, 883 pp.

  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly. 1983. A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev 111:18931918.

    • Search Google Scholar
    • Export Citation
  • Creutin, J. D. and C. Obled. 1982. Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resour. Res 18 . 2,:413431.

    • Search Google Scholar
    • Export Citation
  • Creutin, J. D., H. Andrieu, and D. Faure. 1997. Use of a weather radar for hydrology of a mountainous area. Part II: Radar measurement validation. J. Hydrol 193:2644.

    • Search Google Scholar
    • Export Citation
  • Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical–topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor 33:140158.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S. 1965. Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • Goodison, B. E., B. Sevruk, and S. Klemm. 1989. WMO solid precipitation measurement intercomparison: Objectives, methodology, analysis. Preprints, IAHS Symp. on Atmospheric Deposition, Baltimore, MD, IAHS Vol. 179, 57–64.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K. and E. C. Waymire. 1979. A stochastic study of subsynoptic space–time rainfall. Water Resour. Res 15:637644.

  • Harimaya, T. and K. Tobizuka. 1988. Enhancement of rainfall by the orographic effect: A case study. J. Disaster Sci 10:1324.

  • Hevesi, J. A., J. D. Istok, and A. L. Flint. 1992a. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Meteor 31:661676.

    • Search Google Scholar
    • Export Citation
  • Hevesi, J. A., A. L. Flint, and J. D. Istok. 1992b. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. J. Appl. Meteor 31:677688.

    • Search Google Scholar
    • Export Citation
  • Hill, F. F., K. A. Browning, and M. J. Bader. 1981. Radar and rain gauge observations of orographic rain over south Wales. Quart. J. Roy. Meteor. Soc 107:643670.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. L. and C. L. Hanson. 1995. Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J. Appl. Meteor 34:6887.

    • Search Google Scholar
    • Export Citation
  • Joss, J. and A. Waldvogel. 1990. Precipitation measurement and hydrology. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

    • Search Google Scholar
    • Export Citation
  • Kumar, P. and E. Foufoula-Georgiou. 1993. A multicomponent decomposition of spatial rainfall fields: 1. Segregation of large and small-scale features using wavelet transforms. Water Resour. Res 29:25152532.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S. and B. B. Mandelbrot. 1985. Fractal properties of rain, and a fractal model. Tellus 37A:209232.

  • Matheron, G. 1965. Les Variables Régionalisées et Leur Estimation (Estimation of the Spatialized Variables). Masson, 305 pp.

  • Messaoud, M. and Y. B. Pointin. 1990. Small time and space measurements of the mean rainfall rate made by a gage network and by a dual-polarization radar. J. Appl. Meteor 29:830841.

    • Search Google Scholar
    • Export Citation
  • Michaud, J. D., B. A. Auvine, and O. C. Penalba. 1995. Spatial and elevational variations of summer rainfall in the southwestern United States. J. Appl. Meteor 34:26892703.

    • Search Google Scholar
    • Export Citation
  • Pointin, Y., D. Ramond, and J. Fournet-Fayard. 1988. Radar differential reflectivity ZDR: A real-case evaluation of errors induced by antenna characteristics. J. Atmos. Oceanic Technol 5:416423.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, A. 1969. Picture processing by computer. Computer Science and Applied Mathematics. Academic Press, 196 pp.

  • Schermerhorn, V. P. 1967. Relations between topography and annual precipitation in western Oregon and Washington. Water Resour. Res 3:707711.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B. and S. Klemm. 1989. WMO solid precipitation measurement intercomparison: Objectives, methodology, analysis. Preprints, IAHS Symp. on Atmospheric Deposition, Baltimore, MD, IAHS Vol. 179, 57–64.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A. and W. F. Krajewski. 1987. Statistical modeling of space–time rainfall using radar and raingage observations. Water Resour. Res 23:18931900.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B. 1979. The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press., 87–230.

  • Zawadski, I. I. 1973. Statistical properties of precipitation patterns. J. Appl. Meteor 12:459472.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 260 44 4
PDF Downloads 82 10 0