Simulations of Mesoscale Circulations in the Center of the Iberian Peninsula for Thermal Low Pressure Conditions. Part I: Evaluation of the Topography Vorticity-Mode Mesoscale Model

Fernando Martín Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain

Search for other papers by Fernando Martín in
Current site
Google Scholar
PubMed
Close
,
Sylvia N. Crespí Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain

Search for other papers by Sylvia N. Crespí in
Current site
Google Scholar
PubMed
Close
, and
Magdalena Palacios Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain

Search for other papers by Magdalena Palacios in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Topography Vorticity-Mode Mesoscale (TVM) model has been evaluated for four different cases of thermal low pressure systems over the Iberian Peninsula. These conditions are considered to be representative of the range of summer thermal low pressure conditions in this region. Simulation results have been compared with observations obtained in two intensive experimental campaigns carried out in the Greater Madrid Area in the summer of 1992. The wind fields are qualitatively well simulated by the model. Detailed comparisons of the time series of simulations and observations have been carried out at several meteorological stations. For wind speed and direction, TVM results are reasonably good, although an underprediction of the daily thermal oscillation has been detected. The model reproduces the observed decoupled flow in the nighttime and early morning along with the evolution of mixing layer flow during the day. In addition, the model has simulated specific features of the observed circulations such as low-level jets and drainage, downslope, upslope, and upvalley flows. The model also simulates the formation of hydrostatic mountain waves in the nighttime in some cases.

Corresponding author address: Fernando Martín, Grupo de Modelizacion de la Contaminacion Atmosferica, Dpto. Impacto Ambiental de la Energía, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain.

fernando.martin@ciemat.es

Abstract

The Topography Vorticity-Mode Mesoscale (TVM) model has been evaluated for four different cases of thermal low pressure systems over the Iberian Peninsula. These conditions are considered to be representative of the range of summer thermal low pressure conditions in this region. Simulation results have been compared with observations obtained in two intensive experimental campaigns carried out in the Greater Madrid Area in the summer of 1992. The wind fields are qualitatively well simulated by the model. Detailed comparisons of the time series of simulations and observations have been carried out at several meteorological stations. For wind speed and direction, TVM results are reasonably good, although an underprediction of the daily thermal oscillation has been detected. The model reproduces the observed decoupled flow in the nighttime and early morning along with the evolution of mixing layer flow during the day. In addition, the model has simulated specific features of the observed circulations such as low-level jets and drainage, downslope, upslope, and upvalley flows. The model also simulates the formation of hydrostatic mountain waves in the nighttime in some cases.

Corresponding author address: Fernando Martín, Grupo de Modelizacion de la Contaminacion Atmosferica, Dpto. Impacto Ambiental de la Energía, CIEMAT, Avda. Complutense 22, 28040 Madrid, Spain.

fernando.martin@ciemat.es

Save
  • Atkinson, B. W., 1989: Mesoscale Atmospheric Circulations. Academic Press, 495 pp.

  • Barry, R. G., and R. J. Chorley, 1987: Atmosphere, Weather and Climate. Methuen, 460 pp.

  • Bornstein, R. D., S. Klotz, U. Pechinger, R. Salvador, R. Street, L. J. Shieh, F. Ludwig, and R. Miller, 1987: Application of linked three-dimensional PBL and dispersion models to New York City. Air Pollution Modelling and its Application V, C. de Wispelaere, F. A. Schiermeier, and N. V. Gillani, Eds., Plenum Press, 543–564.

  • ——, P. Thunis, and G. Schayes, 1993: Simulation of urban barrier effects on polluted urban boundary layers using the three-dimensional URBMET/TVM model with urban topography—new results from New York City. Air Pollution, P. Zannetti et al., Eds., Computational Mechanics Publications, 15–34.

  • ——, ——, P. Grossi, and G. Schayes, 1996: Topographic Vorticity-Mode Mesoscale-β (TVM) model. Part II: Evaluation. J. Appl. Meteor.,35, 1824–1834.

  • CNIG, 1995: Modelo Digital del Terreno MDT-1000 (Terrain Digital Model). Centro Nacional de Información Geográfica.

  • Crespí, S. N., and B. Artíñano, 1995: Estudio del fenómeno de isla térmica en la ciudad de Madrid y análisis experimental de su estructura vertical (Study of the heat island phenomenon in the city of Madrid and experimental analysis of its vertical structure). Resumenes de la XXV Reunión Bienal de la Real Sociedad Española de Física, Santiago de Compostella, Spain, Universidad de Santiago de Compostela, A3–23, 53–54.

  • ——, ——, and H. Cabal, 1995: Synoptic classification of the mixed-layer height evolution. J. Appl. Meteor.,34, 1666–1677.

  • Deardorff, J., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res.,83, 1198–1903.

  • Dutrieux, A., 1997: TVMNH2.0a Users’ Guide. Version 1.0. ATM-PRO, 35 pp.

  • Font, I., 1983: Climatología de España y Portugal (Climate of Spain and Portugal). Inst. Nacional de Meteorología. Ministerio de Transportes y Comunicaciones de Madrid, 296 pp.

  • Gaertner, M. A., 1994: Aplicación de un Modelo Numerico de Predicción Meteorológica a la Simulación de Flujos Atmosféricos a Mesoscala en la Zona Centro de la Península Iberica (Application of a numerical meteorological prediction model to the simulation of mesoscale atmospheric flows in the central zone of the Iberian Peninsula). Ph.D. thesis, Universidad Complutense de Madrid, Spain, 319 pp.

  • ——, C. Fernández, and M. Castro, 1993: A two-dimensional simulation of the Iberian summer thermal low. Mon. Wea. Rev.,121, 2740–2756.

  • Ibarra, J. I., R. L. Walko, and W. A. Lyons, 1994: Mesoscale dispersion modeling of the Iberian thermal low in summer time. Computer Simulations, Vol. I, Air Pollution II, J. M. Baldasano et al., Eds., Computational Mechanics Publications. 77–85.

  • Junning, L., Q. Zhengan, and S. Fumin, 1984: An investigation of the summer lows over the Qinghai–Xizang Plateau. Proc. Int. Symp. on the Qinghai–Xizang Plateau and Mountain Meteorology, Beijing, China, Amer. Meteor. Soc., 369–389.

  • Leslie, L. M., 1980: Numerical modeling of the summer heat flow over Australia. J. Appl. Meteor.,19, 381–387.

  • Martín, F., and I. Palomino, 1995: Análisis de las brisas en la costa atlántico–andaluza y su penetración en el valle del Guadalquivir (Analysis of the breezes in the Atlantic–Andalucian Coast and their penetration into the Guadalquivir valley). Resumenes de la XXV Reunión Bienal de la Real Sociedad Española de Física, Santiago de Compostella, Spain, Universidad de Santiago de Compostela, A3–32, 71–72.

  • ——, M. A. Gaertner, I. Palomino, M. Castro, and B. Artiñano, 1996:Simulation of winter mesoscale flows in the center of the Iberian Peninsula by using two prognostic models. Monitoring, Simulation and Control, Vol. IV, Air Pollution, B. Caussade, H. Power, and C. A. Brebbia, Eds., Computational Mechanics Publications. 637–646.

  • ——, S. N. Crespí, and M. Palacios, 1997: Simulations of air flows in the center of the Iberian Peninsula under thermal low conditions. Third TVM Users Meeting, Louvain-La-Neuve, Belgium, Institut d’Astronomie et Geophysique Georges Lemaitre, 7.1–7.63.

  • ——, ——, and ——, 2001: Simulations of mesoscale circulations in the center of the Iberian Peninsula for thermal low pressure conditions. Part II: Air-parcel transport patterns. J. Appl. Meteor.,40, 905–914.

  • Millán, M. M., B. Artíñano, L. Alonso, M. Navazo, and M. Castro, 1991: The effect of mesoscale flows on regional and long-range atmospheric transport in the western Mediterranean area. Atmos. Environ.,25A, 949–963.

  • Monteith, J. L., 1981: Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc.,107, 1–27.

  • Moussiopoulos, N., 1996: State of the art of air pollution modelling—needs and trends. Monitoring, Simulation and Control, Vol. IV, Air Pollution, B. Caussade, H. Power, and C. A. Brebbia, Eds., Computational Mechanics Publications, 47–56.

  • Plaza, J., M. Pujadas, and B. Artíñano, 1997: Formation and transport of the Madrid ozone plume. J. Air Waste Manage. Assoc.,47, 766–774.

  • Portela, A., 1994: Climatología Sinóptica de las Depresiones Térmicas en la Península Iberica (Synoptic climatology of thermal lows in the Iberian Peninsula). Ph.D. thesis, Universidad Complutense de Madrid, Spain, 319 pp.

  • ——, and M. Castro, 1991: Primera aproximación a una climatología de las depresiones térmicas en la Península Ibérica (First approximation to a climate description of thermal lows in the Iberian Peninsula). Rev. Geofis.,47, 205–215.

  • ——, and ——, 1996: Summer thermal lows in the Iberian peninsula:A three-dimensional simulation. Quart. J. Roy. Meteor. Soc.,122A, 1–22.

  • Sasamori, T., 1968: The radiative cooling calculation for application to general circulation experiments. J. Appl. Meteor.,7, 721–729.

  • Schayes, G., 1982: Direct determination of diffusivity profiles from synoptic reports. Atmos. Environ.,16, 1407–1413.

  • ——, and P. Thunis, 1990: A three-dimensional mesoscale model in vorticity mode. Instutt d’Astronomie et de Geophysique Contrib. 60, Univ. Catholique de Louvain-la Neuve, Belgium, 42 pp.

  • ——, ——, and R. D. Bornstein, 1996: Topographic Vorticity-Mode Mesoscale-β (TVM) model. Part I: Formulation. J. Appl. Meteor.,35, 1815–1823.

  • Therry, G., and P. Lacarrère, 1983: Improving the eddy kinetic energy model for planetary boundary layer description. Bound.-Layer Meteor.,25, 63–88.

  • Thunis, P., 1995: Development and implementation of the nonhydrostatic Topographic Vorticity-Mode Mesoscale (TVM/NH) model. Ph.D. dissertation, Univ. Catholique de Louvain-la Neuve, Belgium, 116 pp.

  • ——, P. Grossi, G. Graziani, H. Gallée, B. Moyaux, and G. Schayes, 1993: Preliminary simulations of the flow field over the Attica Peninsula. Environ. Software,8, 43–54.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 43 1
PDF Downloads 71 14 0