• Askelson, M. A., , J. P. Aubagnac, , and J. M. Straka. 2000. An adaptation of the Barnes filter applied to the objective analysis of radar data. Mon. Wea. Rev. 128:30503083.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., , Y. Zhao, , and T. A. Seliga. 1990. A differential reflectivity radar hail measurement technique: Observations during the Denver hailstorm of 13 June 1984. J. Atmos. Oceanic Technol. 7:104113.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and D. S. Zrnić. 1990a. Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci. 47:565583.

  • Balakrishnan, N., and D. S. Zrnić. 1990b. Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci. 47:15251540.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , J. Vivekanandan, , J. D. Tuttle, , and C. J. Kessinger. 1995. A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev. 123:31293143.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , T. A. Seliga, , and W. A. Cooper. 1984. Analysis of aircraft hydrometeor spectra and differential reflectivity (Zdr) radar measurements during the Cooperative Convective Precipitation Experiment. Radio Sci. 19:157167.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , D. A. Burrows, , and S. M. Menon. 1991. Multiparameter radar and aircraft study of raindrop spectral evolution in warm-based clouds. J. Appl. Meteor. 30:853880.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , K. Knupp, , and L. Liu. 1995. Microphysical and kinematic study of early-to-mature cloud transition using multiparameter radar, dual-Doppler synthesis and aircraft penetrations. Preprints, Conf. on Cloud Physics, Dallas, TX, Amer. Meteor. Soc., 267–271.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., , L. Liu, , P. C. Kennedy, , V. Chandrasekar, , and S. A. Rutledge. 1996. Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys. 59:331.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., , L. R. Lemon, , and D. W. Burgess. 1978. Tornado detection by pulsed Doppler radar. Mon. Wea. Rev. 106:2938.

  • Carras, J. W., and W. C. Macklin. 1973. The shedding of accreted water during hailstone growth. Quart. J. Roy. Meteor. Soc. 99:639648.

    • Search Google Scholar
    • Export Citation
  • Conway, J. W., and D. S. Zrnić. 1993. A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Mon. Wea. Rev. 121:25112528.

    • Search Google Scholar
    • Export Citation
  • Detwiler, A. G., , K. R. Hartman, , and P. L. Smith. 1996. Summary of T-28 participation in VORTEX/MIGHT, 1994–1995. Rep. SDSMT/IAS/R-96/01, South Dakota School of Mines, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić. 1993. Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Doviak, R. J., , V. Bringi, , A. Ryzhkov, , A. Zahrai, , and D. S. Zrnić. 2000. Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol. 17:257278.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T. 1982. Errors in fixed and moving frame of references: Applications for conventional and Doppler radar analysis. J. Atmos. Sci. 39:22792300.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and M. R. Hjelmfelt. 1984. Processes of hydrometeor development in Oklahoma convective clouds. J. Atmos. Sci. 41:28112835.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J., , V. N. Bringi, , and L. D. Carey. 1998. CSU-CHILL polarimetric measurements from a severe hailstorm in eastern Colorado. J. Appl. Meteor. 37:749775.

    • Search Google Scholar
    • Export Citation
  • Husson, D., and Y. Pointin. 1989. Quantitative estimation of hailfall intensity with a dual-polarization radar and a hailpad network. Preprints, 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 318–321.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., and R. M. Rasmussen. 1992. Hail growth hysterisis. J. Atmos. Sci. 49:25252532.

  • Johnson, G. N., and P. L. Smith Jr.,. 1980. Meteorological instrumentation system on the T-28 thunderstorm research aircraft. Bull. Amer. Meteor. Soc. 61:972979.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., , V. N. Bringi, , S. Bolen, , and S. A. Rutledge. 1995. An examination of dual polarization signatures associated with confirmed occurrences of large hail. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 41–43.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , N. C. Knight, , W. W. Grotewold, , and T. W. Cannon. 1977. Interpretation of foil impactor impressions of water and ice particles. J. Appl. Meteor. 16:9971002.

    • Search Google Scholar
    • Export Citation
  • Lesins, G. B., and R. List. 1986. Sponginess and drop shedding of gyrating hailstones in a pressure-controlled icing wind tunnel. J. Atmos. Sci. 43:28132825.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar. 2000. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in-situ verification. J. Atmos. Oceanic Technol. 17:140164.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L. 1999. In-situ and multiparameter radar observations of an isolated Oklahoma super-cell at far range. M.S. thesis, Dept. of Meteorology, University of Oklahoma, 152 pp.

    • Search Google Scholar
    • Export Citation
  • Lutz, J., , P. Johnson, , B. Lewis, , E. Loew, , M. Randall, , and J. VanAndel. 1995. NCAR's SPOL portable polarimetric S-band radar. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 408–410.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., , J. D. Tuttle, , and C. A. Knight. 1988. Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci. 45:736762.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., , J. D. Tuttle, , and G. B. Foote. 1990. Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci. 47:16191646.

    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., , S. V. Vasiloff, , G. J. Stumpf, , A. Witt, , M. D. Eilts, , J. T. Johnson, , and K. W. Thomas. 1998. The National Severe Storms Laboratory Tornado Detection Algorithm. Wea. Forecasting 13:352366.

    • Search Google Scholar
    • Export Citation
  • Mueller, E. A. 1984. Calculation procedure for differential propagation phase shift. Preprints, 22d Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 397–399.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and K. V. Beard. 1970. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc. 96:247256.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, R., , A. Detwiler, , J. Helson Jr.,, , and P. L. Smith. 1996. Precipitation development and electrification in Florida thunderstorm cells during Convection and Precipitation/Electrification Project. J. Geophys. Res. 101 D1:15991619.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., , J. M. Straka, , R. Davies-Jones, , C. A. Doswell III,, , F. H. Carr, , M. D. Eilts, , and D. R. MacGorman. 1994. Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc. 75:9951006.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield. 1987a. Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci. 44:27542763.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield. 1987b. Melting and shedding of graupel and hail. Part III: Investigation of the role of shed drops as hail embryos in the 1 August CCOPE severe storm. J. Atmos. Sci. 44:27832803.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., , V. Levizzani, , and H. R. Pruppacher. 1984. A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius >500 μm. J. Atmos. Sci. 41:381388.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić. 1998. Beamwidth effects on the differential phase measurements of rain. J. Atmos. Oceanic Technol. 15:624634.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , D. S. Zrnić, , and B. A. Gordon. 1998. Polarimetric method for ice water content determination. J. Appl. Meteor. 37:125134.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and D. S. Zrnić. 1987. Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol. 4:588598.

    • Search Google Scholar
    • Export Citation
  • Schecter, T. A., and R. G. Russ. 1970. The relationship between inprint size and drop diameter for an airborne drop sampler. J. Appl. Meteor. 9:123126.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., , A. V. Ryzhkov, , D. S. Zrnić, , and M. Schönhuber. 2001. Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor. 40:10191034.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi. 1976. Potential use of radar reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor. 15:6976.

    • Search Google Scholar
    • Export Citation
  • Stapor, D. T., and T. Prat. 1984. A generalized analysis of dual-polarization measurements of rain. Radio Sci. 19:9098.

  • Straka, J. M., , D. S. Zrnić, , and A. V. Ryzhkov. 2000. Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor. 39:13411372.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and V. N. Bringi. 1988. Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST Project. Mon. Wea. Rev. 116:15211539.

    • Search Google Scholar
    • Export Citation
  • Witt, A., and J. T. Johnson. 1993. An enhanced storm cell identification and tracking algorithm. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 154–156.

    • Search Google Scholar
    • Export Citation
  • Young, K. C. 1993. Microphysical Processes in Clouds. Oxford University Press, 427 pp.

  • Zahrai, A., and D. S. Zrnić. 1993. The 10-cm-wavelength polarimetric radar at NOAA's National Severe Storms Laboratory. J. Atmos. Oceanic Technol. 10:649662.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. Ryzhkov. 1999. Polarimetry for weather surveillance radar. Bull. Amer. Meteor. Soc. 80:389406.

  • Zrnić, D. S., , V. N. Bringi, , N. Balakrishnan, , K. Aydin, , V. Chandrasekar, , and J. Hubbert. 1993. Polarimetric measurements in a severe hailstorm. Mon. Wea. Rev. 121:22232238.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., , A. Ryzhkov, , J. Straka, , Y. Liu, , and J. Vivekanandan. 2001. Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol. 18:892913.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 197 4
PDF Downloads 78 78 5

Enhanced Polarimetric Radar Signatures above the Melting Level in a Supercell Storm

View More View Less
  • a School of Meteorology and Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma
  • | b School of Meteorology, The University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma
  • | c School of Meteorology and Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma
  • | d School of Meteorology and Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Compelling in situ and polarimetric radar observations from a severe Oklahoma supercell storm are presented. The in situ observations are from an aircraft that entered the storm above the main inflow region, sampling the embryo curtain, main updraft, its western fringe (very close to the center of mesocyclonic circulation), and the hail cascade region. At the same time, the Cimarron polarimetric radar observed enhanced signatures in specific differential phase Kdp and differential reflectivity Zdr straddling the main updraft and extending several kilometers above the melting layer. The distance of the storm from the radar balances the novelty of this dataset, however, which is on the order of 100 km. The authors therefore rely heavily on the in situ data, including calculation of polarimetric variables, on comparisons with other in situ datasets, and on accepted conceptual models of hail growth in supercell storms to clarify hydrometeor processes in light of the intriguing polarimetric signatures near the updraft. The relation of enhanced Kdp to the main updraft, to the Zdr “column,” and to precipitation is discussed. Strong evidence points to melting ice particles (>3 mm) below the aircraft height as the origin of the Kdp column in the region where an abundant number of small (<2 mm) drops are also observed. To support the notion that these drops are shed by melting and perhaps wet growth, results of calculations on aircraft data are discussed. Resolution issues are invoked, leading to possible reconciliation of radar measurements with in situ observations.

Current affiliation: Meteorological Service of Canada, Vancouver, British Columbia, Canada

Corresponding author address: Dr. Dušan S. Zrnić, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. zrnic@nssl.noaa.gov

Abstract

Compelling in situ and polarimetric radar observations from a severe Oklahoma supercell storm are presented. The in situ observations are from an aircraft that entered the storm above the main inflow region, sampling the embryo curtain, main updraft, its western fringe (very close to the center of mesocyclonic circulation), and the hail cascade region. At the same time, the Cimarron polarimetric radar observed enhanced signatures in specific differential phase Kdp and differential reflectivity Zdr straddling the main updraft and extending several kilometers above the melting layer. The distance of the storm from the radar balances the novelty of this dataset, however, which is on the order of 100 km. The authors therefore rely heavily on the in situ data, including calculation of polarimetric variables, on comparisons with other in situ datasets, and on accepted conceptual models of hail growth in supercell storms to clarify hydrometeor processes in light of the intriguing polarimetric signatures near the updraft. The relation of enhanced Kdp to the main updraft, to the Zdr “column,” and to precipitation is discussed. Strong evidence points to melting ice particles (>3 mm) below the aircraft height as the origin of the Kdp column in the region where an abundant number of small (<2 mm) drops are also observed. To support the notion that these drops are shed by melting and perhaps wet growth, results of calculations on aircraft data are discussed. Resolution issues are invoked, leading to possible reconciliation of radar measurements with in situ observations.

Current affiliation: Meteorological Service of Canada, Vancouver, British Columbia, Canada

Corresponding author address: Dr. Dušan S. Zrnić, National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069. zrnic@nssl.noaa.gov

Save