• Albrecht, B. A., , D. A. Randall, , and S. Nicholls. 1988. Observation of marine stratocumulus clouds during FIRE. Bull. Amer. Meteor. Soc. 69:618626.

    • Search Google Scholar
    • Export Citation
  • Anderson, G. P., , S. A. Clough, , F. X. Kneizys, , J. H. Chetwynd, , and E. P. Shettle. 1986. AFGL atmospheric constituent profiles (0–120 km). Hanscom Air Force Base Tech. Rep. AFGL-TR-86-0110 (OPI).

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., , T. J. Curtis, , E. Leontyeva, , and K. Stamnes. 1998. Optical depth of overcast cloud across Canada: Estimates based on surface pyranometer and satellite measurements. J. Climate 11:29802994.

    • Search Google Scholar
    • Export Citation
  • Blanchet, J., and R. List. 1983. Estimation of optical properties of Arctic haze using a numerical model. Atmos.–Ocean 21:444465.

  • Coakley Jr.,, J. A., and F. P. Bretherton. 1982. Cloud cover from high resolution scanner data: Detecting and allowing for partially filled fields of view. J. Geophys. Res. 87:49174932.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , E. E. Ebert, , and G. F. Herman. 1988. Mean and turbulent structure on the summertime Arctic cloudy boundary layer. Quart. J. Roy. Meteor. Soc. 114:715746.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A. Coauthors,. 2000. FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc. 81:529.

  • Dong, X., , G. G. Mace, , P. Minnis, , and D. F. Young. 2001. Arctic stratus cloud properties and their effects on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res. 106:1529715312.

    • Search Google Scholar
    • Export Citation
  • Foot, J. S. 1988. Some observations of the optical properties of clouds. I: Stratocumulus. Quart. J. Roy. Meteor. Soc. 114:129144.

  • Fu, Q., and K. N. Liou. 1993. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 50:20092025.

  • Han, Q., , W. B. Rossow, , and A. A. Lacis. 1994. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate 7:465497.

    • Search Google Scholar
    • Export Citation
  • Han, W., , K. Stamnes, , and D. Lubin. 1999. Retrieval of surface and cloud properties in the Arctic from NOAA AVHRR measurements. J. Appl. Meteor. 38:9891012.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., , T. Reisin, , W. R. Cotton, , and S. M. Kreidenweis. 1999. Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res. 51:4575.

    • Search Google Scholar
    • Export Citation
  • Herman, G., and R. Goody. 1976. Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci. 33:15371553.

  • Hu, Y. X., and K. Stamnes. 1993. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate 6:728742.

    • Search Google Scholar
    • Export Citation
  • Key, J. R., , J. B. Collins, , C. Fowler, , and R. S. Stone. 1997. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 61:302309.

    • Search Google Scholar
    • Export Citation
  • King, M. D. 1987. Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci. 44:17341751.

    • Search Google Scholar
    • Export Citation
  • Leontyeva, E., and K. Stamnes. 1994. Estimate of cloud optical thickness from ground-based measurements of incoming solar radiation in the Arctic. J. Climate 7:566578.

    • Search Google Scholar
    • Export Citation
  • Lubin, D., and P. J. Weber. 1995. The use of cloud reflectance functions with satellite data for surface radiation budget estimation. J. Appl. Meteor. 34:13331347.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., , R. W. Fenn, , J. E. A. Selby, , F. E. Volz, , and J. S. Garing. 1971. Optical properties of the atmosphere. Air Force Cambridge Rep. AFCRL-71-0279, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , P. W. Heck, , and D. F. Young. 1993. Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci. 50:13051322.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , W. L. Smith Jr.,, , D. P. Garber, , J. K. Ayers, , and D. R. Doelling. 1995. Cloud properties derived from GOES-7 for the spring 1994 ARM Intensive Observing Period using version 1.0.0 of the ARM satellite data analysis program. NASA Rep. 1366, 59 pp.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , D. P. Garber, , D. F. Young, , R. F. Arduini, , and Y. Takano. 1998. Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci. 55:33133339.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King. 1990. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci. 47:18781893.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , M. D. King, , J. D. Spinhirne, , and L. F. Radke. 1991. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: Marine stratocumulus observations. J. Atmos. Sci. 48:728750.

    • Search Google Scholar
    • Export Citation
  • Olsson, P. Q., , J. Y. Harrington, , G. Feingold, , W. R. Cotton, , and S. M. Kreidenweis. 1998. Exploratory cloud-resolving simulations of boundary-layer Arctic stratus clouds. Part I: Warm-season clouds. Atmos. Res. 47–48:573597.

    • Search Google Scholar
    • Export Citation
  • Penndorf, R. 1957. Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2–20 μm and their application to atmospheric optics. J. Opt. Soc. Amer. 47:176182.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K. Coauthors,. 1999. SHEBA: Snow and Ice Studies. CD-ROM. [Available from D. Perovich, CRREL, 72 Lyme Road, Hanover, NH 03755.].

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and F. P. J. Valero. 1995. A validation of a satellite cloud retrieval during ASTEX. J. Atmos. Sci. 52:29853001.

  • Platnick, S., , J. Y. Li, , M. D. King, , H. Gerber, , and P. Hobbs. 2001. A solar reflectance method for retrieving the optical thickness and droplet size and liquid water clouds over snow and ice surfaces. J. Geophys. Res. 106:1518515199.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and J. Chen. 1996. Post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-14 spacecraft. Int. J. Remote Sens. 17:27432747.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and J. Chen. 1999. Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens. 20:34853491.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , L. C. Gardner, , and A. A. Lacis. 1989. Global seasonal cloud variations from satellite radiation measurements. Part I: Sensitivity of analysis. J. Climate 2:419458.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., , S. Nicholls, , and J. Schmetz. 1982. Aircraft observations of marine stratocumulus during JASIN. Quart. J. Roy. Meteor. Soc. 108:833856.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., , R. Boers, , and W. D. Hart. 1989. Cloud top liquid water from lidar observations of marine stratocumulus. J. Appl. Meteor. 28:8190.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., , S. C. Tsay, , W. Wiscombe, , and K. Jayaweera. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27:25022509.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., , S-C. Tsay, , W. J. Wiscombe, , and I. Laszlo. cited 2000. DISORT: A general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: Documentation of methodology. [Available online at ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/.].

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. M. R. Platt. 1987. Aircraft observations of the radiative and microphysical properties of stratocumulus and cumulus clouds fields. J. Appl. Meteor. 26:12431269.

    • Search Google Scholar
    • Export Citation
  • Thomas, G. E., and K. Stamnes. 1999. Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 517 pp.

  • Tsay, S. C., and K. Jayaweera. 1984. Physical characteristics of Arctic stratus clouds. J. Appl. Meteor. 23:584596.

  • Tsay, S. C., , K. Stamnes, , and K. Jayaweera. 1989. Radiative energy budget in the cloudy and hazy Arctic. J. Atmos. Sci. 46:10021017.

  • Twomey, S., and T. Cocks. 1982. Spectral reflectance of clouds in the near-infrared: Comparison of measurements and calculations. J. Meteor. Soc. Japan 60:583592.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., and T. Cocks. 1989. Remote sensing of cloud parameters from spectral reflectance in the near-infrared. Beitr. Phys. Atmos. 62:172179.

    • Search Google Scholar
    • Export Citation
  • Wang, M., and W. D. King. 1997. Correction of Rayleigh scattering effects in cloud optical thickness retrievals. J. Geophys. Res. 102:2591525926.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and W. J. Wiscombe. 1980. A model for the spectral albedo of snow. II. Snow containing atmospheric aerosols. J. Atmos. Sci. 37:27342745.

    • Search Google Scholar
    • Export Citation
  • Xiong, X. 2000. Cloud and surface properties and the solar radiation budget derived from satellite data over the Arctic Ocean: Comparisons with surface measurements and in situ aircraft data. Ph.D thesis, University of Alaska, Fairbanks, 217 pp.

    • Search Google Scholar
    • Export Citation
  • Yamanouchi, T., and S. Kawaguchi. 1992. Cloud distribution in the Antarctic from AVHRR data and radiation measurements at the surface. Int. J. Remote Sens. 13:111127.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 141 5
PDF Downloads 8 8 0

A Critical Examination of Satellite Cloud Retrieval from AVHRR in the Arctic Using SHEBA Data

View More View Less
  • a Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
  • | b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | c Stevens Institute of Technology, Hoboken, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study examines the validity and limitations associated with retrieval of cloud optical depth τ and effective droplet size re in the Arctic from Advanced Very High Resolution Radiometer (AVHRR) channels 2 (0.725–1.10 μm), 3 (3.55–3.93 μm), and 4 (10.3–11.3 μm). The error in re is found to be normally less than 10%, but the uncertainty in τ can be more than 50% for a 10% uncertainty in the satellite-measured radiance. Model simulations show that the satellite-retrieved cloud optical depth τsat is overestimated by up to 20% if the vertical cloud inhomogeneity is ignored and is underestimated by more than 50% if overlap of cirrus and liquid water clouds is ignored. Under partially cloudy conditions, τsat is larger than that derived from surface-measured downward solar irradiance (τsurf) by 40%–130%, depending on cloud-cover fraction. Here, τsat derived from NOAA-14 AVHRR data agrees well with τsurf derived from surface measurements of solar irradiance at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp in summer, but τsat is about 2.3 times τsurf before the onset of snowmelt. This overestimate of τsat is mainly due to the high reflectivity in AVHRR channel 2 over snow/ice surfaces, the presence of partial cloud cover, and inaccurate representation of the scattering phase function for mixed-phase clouds.

Current affiliation: QSS Group, Inc., Camp Springs, Maryland

Corresponding author address: Knut Stamnes, Light and Life Laboratory, Department of Physics and Engineering Physics, Castle Point on Hudson, Stevens Institute of Technology, Hoboken, NJ 07030. kstamnes@stevens-tech.edu

Abstract

This study examines the validity and limitations associated with retrieval of cloud optical depth τ and effective droplet size re in the Arctic from Advanced Very High Resolution Radiometer (AVHRR) channels 2 (0.725–1.10 μm), 3 (3.55–3.93 μm), and 4 (10.3–11.3 μm). The error in re is found to be normally less than 10%, but the uncertainty in τ can be more than 50% for a 10% uncertainty in the satellite-measured radiance. Model simulations show that the satellite-retrieved cloud optical depth τsat is overestimated by up to 20% if the vertical cloud inhomogeneity is ignored and is underestimated by more than 50% if overlap of cirrus and liquid water clouds is ignored. Under partially cloudy conditions, τsat is larger than that derived from surface-measured downward solar irradiance (τsurf) by 40%–130%, depending on cloud-cover fraction. Here, τsat derived from NOAA-14 AVHRR data agrees well with τsurf derived from surface measurements of solar irradiance at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp in summer, but τsat is about 2.3 times τsurf before the onset of snowmelt. This overestimate of τsat is mainly due to the high reflectivity in AVHRR channel 2 over snow/ice surfaces, the presence of partial cloud cover, and inaccurate representation of the scattering phase function for mixed-phase clouds.

Current affiliation: QSS Group, Inc., Camp Springs, Maryland

Corresponding author address: Knut Stamnes, Light and Life Laboratory, Department of Physics and Engineering Physics, Castle Point on Hudson, Stevens Institute of Technology, Hoboken, NJ 07030. kstamnes@stevens-tech.edu

Save