Validation of NWP Mesoscale Models with Swiss GPS Network AGNES

G. Guerova Institute of Applied Physics, University of Bern, Bern, Switzerland

Search for other papers by G. Guerova in
Current site
Google Scholar
PubMed
Close
,
E. Brockmann Swiss Federal Office of Topography, Wabern, Switzerland

Search for other papers by E. Brockmann in
Current site
Google Scholar
PubMed
Close
,
J. Quiby Federal Office of Meteorology and Climatology, Zurich, Switzerland

Search for other papers by J. Quiby in
Current site
Google Scholar
PubMed
Close
,
F. Schubiger Federal Office of Meteorology and Climatology, Zurich, Switzerland

Search for other papers by F. Schubiger in
Current site
Google Scholar
PubMed
Close
, and
C. Matzler Institute of Applied Physics, University of Bern, Bern, Switzerland

Search for other papers by C. Matzler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The importance of water vapor for the hydrological cycle of the earth and the atmosphere is well known but difficult to study and sample. In this respect, the vertically integrated water vapor (IWV) derived from global positioning system (GPS) delay is a potential source of valuable weather information. Because of the relatively dense station distribution, both the temporal and horizontal variability of water vapor are well captured by the GPS. This makes GPS data well suited for numerical weather prediction (NWP) models. In this paper the automated GPS network of Switzerland (AGNES) is used for calculation of IWV and for comparison with radiosonde data and two NWP mesoscale models from MeteoSwiss named Local Model (LM) and Swiss Model (SM). Reasonably good agreement between GPS and radiosonde data is reported. It has been identified that in some particular weather situations with low stratus clouds and temperature inversion, the radiosonde significantly overestimates the water vapor amount. The LM and SM verification with GPS data indicates good agreement during the winter period (November 2000–March 2001) and high variability and bias in the summer period (August 2000). The monthly mean IWV values from GPS and LM show a systematic deviation over the Swiss plateau region and a very good agreement for the high-altitude alpine station, Andermatt. The capability of GPS in monitoring the atmospheric phenomena has been demonstrated. Unrealistic IWV at Jungfraujoch (∼3600 m MSL) caused by GPS antenna problems is reported.

Corresponding author address: Dr. Guergana Guerova, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, Bern CH-3012, Switzerland. guergana.guerova@mw.iap.unibe.ch

Abstract

The importance of water vapor for the hydrological cycle of the earth and the atmosphere is well known but difficult to study and sample. In this respect, the vertically integrated water vapor (IWV) derived from global positioning system (GPS) delay is a potential source of valuable weather information. Because of the relatively dense station distribution, both the temporal and horizontal variability of water vapor are well captured by the GPS. This makes GPS data well suited for numerical weather prediction (NWP) models. In this paper the automated GPS network of Switzerland (AGNES) is used for calculation of IWV and for comparison with radiosonde data and two NWP mesoscale models from MeteoSwiss named Local Model (LM) and Swiss Model (SM). Reasonably good agreement between GPS and radiosonde data is reported. It has been identified that in some particular weather situations with low stratus clouds and temperature inversion, the radiosonde significantly overestimates the water vapor amount. The LM and SM verification with GPS data indicates good agreement during the winter period (November 2000–March 2001) and high variability and bias in the summer period (August 2000). The monthly mean IWV values from GPS and LM show a systematic deviation over the Swiss plateau region and a very good agreement for the high-altitude alpine station, Andermatt. The capability of GPS in monitoring the atmospheric phenomena has been demonstrated. Unrealistic IWV at Jungfraujoch (∼3600 m MSL) caused by GPS antenna problems is reported.

Corresponding author address: Dr. Guergana Guerova, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, Bern CH-3012, Switzerland. guergana.guerova@mw.iap.unibe.ch

Save
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware. 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 97:1578715801.

    • Search Google Scholar
    • Export Citation
  • Brockmann, E., G. Guerova, and M. Troller. 2002. Swiss activities in combining GPS with meteorology. Mitteilungen des Bundesamtes für Kartographie und Geodäsie, J. A. Torres and H. Hornik, Eds., EUREF Publ. 10, Vol. 23, Frankfurt, Germany 95–99.

    • Search Google Scholar
    • Export Citation
  • Doms, G. and U. Schaettler. Eds.,. 1999. The nonhydrostatic limited-area model LM (Local Model) of DWD. Part I: Scientific documentation. Deutscher Wetterdienst Rep. LM F90 1.35, 172 pp. [Available from Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany.].

    • Search Google Scholar
    • Export Citation
  • Doms, G. and U. Schaettler. Eds.,. 2001. COSMO Newsletter. No. 1, 114 pp. [Available from Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany.].

    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., G. Elgered, and J. Johanson. 1998. Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers. J. Geophys. Res. 103:18071820.

    • Search Google Scholar
    • Export Citation
  • Flores, A., G. Ruffini, and A. Ruis. 2000. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 18:223234.

  • Gassmann, A. 2001. Filtering of LM-orography. COSMO Newsletter, No. 1, G. Doms and U. Schaettler, Eds., 71–78. [Available from Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany.].

    • Search Google Scholar
    • Export Citation
  • Güldner, J. and D. Spänkuch. 1999. Results of year-round remotely sensed integrated water vapor by ground-based microwave radiometry. J. Appl. Meteor. 38:981988.

    • Search Google Scholar
    • Export Citation
  • Ingold, T., B. Schmid, C. Matzler, P. Demoulin, and N. Kampfer. 2000. Modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.72, 0.82, and 0.94 μm absorption band. J. Geophys. Res. 105:2432724343.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., X. Zou, and Y. R. Guo. 1996. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments. Mon. Wea. Rev. 124:122147.

    • Search Google Scholar
    • Export Citation
  • Liou, Y-A., Y-T. Teng, T. van Hove, and J. C. Liljegren. 2001. Comparison of precipitable water observations in the near Tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteor. 40:515.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A. E. and Y. Xie. 2000. On the use of slant observations from GPS to diagnose three dimensional water vapor using 3DVAR. Preprints, Fourth Symp. on Integrated Observing Systems, Long Beach, CA, Amer. Meteor. Soc. 6273.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A. E., Y. Xie, and R. Ware. 2002. Diagnosis of three-dimensional water vapor using a GPS network. Mon. Wea. Rev. 130:386397.

    • Search Google Scholar
    • Export Citation
  • Majewski, D. 1985. Balanced initial and boundary values for limited area model. Contrib. Atmos. Phys. 58:147159.

  • Niell, A. E. 1996. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 101:32273246.

  • Ohtani, R. and I. Naito. 2000. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res. 105:2691726929.

    • Search Google Scholar
    • Export Citation
  • Richner, H. 1999. Grundlagen aerologischer Messungen speziell mittels der Schweizer Sonde SRS 400. SMA-MeteoSchweiz Publ. 61, 140 pp. [Available from SMA-MeteoSchweiz, Kraehbuehlstrasse 58, CH-8044 Zurich, Switzerland.].

    • Search Google Scholar
    • Export Citation
  • Rocken, C. R., R. Ware, T. van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger. 1993. Sensing atmospheric water vapor with the global positioning system. Geophys. Res. Lett. 20:26312634.

    • Search Google Scholar
    • Export Citation
  • Rocken, C. R., T. van Hove, J. Johnson, F. Solheim, R. Ware, M. Bevis, S. Chiswell, and S. Businger. 1995. GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol. 12:468478.

    • Search Google Scholar
    • Export Citation
  • Rothacher, M. and L. Mervart. 1996. Bernese GPS software version 4.0. Astronomical Institute, University of Bern, 418 pp.

  • Schneider, D., E. Brockmann, U. Marti, A. Schlatter, and U. Wild. 2000. Introduction of a precise Swiss Positioning Service “swipos” and progress in the Swiss national height network (LHN95). Mitteilungen des Bundesamtes für Kartographie und Geodäsie, J. A. Torres and H. Hornik, Eds., EUREF Publ. 9, Frankfurt, Germany, 315–322.

    • Search Google Scholar
    • Export Citation
  • Schraff, C. 1997. Mesoscale data assimilation and prediction of low stratus in the Alpine region. Meteor. Atmos. Phys. 64:2150.

  • Stauffer, D. R. and N. L. Seaman. 1994. Multiscale four-dimensional data assimilation. J. Appl. Meteor. 33:416434.

  • Ware, R. H. Coauthors,. 2000. SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc. 81:677694.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S. and N. L. Seaman. 1994. Quantification of predictive skill for mesoscale and synoptic-scale meteorological features as a function of horizontal grid resolution. Mon. Wea. Rev. 122:5771.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 47 2
PDF Downloads 84 23 0