• Askne, J., and H. Nordius. 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 22:379386.

  • Bar-Sever, Y. E., , P. M. Kroger, , and J. A. Borjesson. 1998. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J. Geophys. Res. 103:50195035.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., , S. Businger, , T. A. Herring, , C. Rocken, , A. Anthes, , and R. Ware. 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 97:1578715801.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., , S. Businger, , S. Chiswell, , T. A. Herring, , R. A. Anthes, , C. Rocken, , and R. H. Ware. 1994. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor. 33:379386.

    • Search Google Scholar
    • Export Citation
  • Bock, Y., , R. I. Abbot, , C. C. Counselman, , S. A. Gourevitch, , and R. W. King. 1986. Interferometric analysis of GPS phase observations. Manuscr. Geod. 11:282288.

    • Search Google Scholar
    • Export Citation
  • Davis, J. L., , T. A. Herring, , I. I. Shapiro, , A. E. Rogers, , and G. Elgered. 1985. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 20:15931607.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., , C. Ramis, , R. Romero, , and S. Alonso. 1998. A diagnostic study of three heavy precipitation episodes in the western Mediterranean region. Wea. Forecasting 13:102124.

    • Search Google Scholar
    • Export Citation
  • Duan, J. Coauthors,. 1996. GPS meteorology: Direct estimation of the absolute value of precipitable water vapor. J. Appl. Meteor. 35:830838.

    • Search Google Scholar
    • Export Citation
  • Elgered, G., , J. L. Davis, , T. A. Herring, , and I. I. Shapiro. 1991. Geodesy by radio interferometry—Water vapor radiometry for estimation of the wet delay. J. Geophys. Res. 96:65416555.

    • Search Google Scholar
    • Export Citation
  • Elgered, G., , J. M. Johansson, , B. O. Ronnang, , and J. L. Davis. 1997. Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophys. Res. Lett. 24:26632666.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P. 1993. Effects of conversion algorithms on reported upper-air dewpoint depressions. Bull. Amer. Meteor. Soc. 74:13231325.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen. 1991. On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc. 72:15071520.

    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., and H. J. P. Derks. 2000. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteor. Appl. 7:6168.

    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., , G. Elgered, , and J. M. Johansson. 1998. Three months of continuous monitoring of atmospheric water vapor with a network of global positioning system receivers. J. Geophys. Res. 103:18071820.

    • Search Google Scholar
    • Export Citation
  • Emardson, T. R., , J. Johansson, , and G. Elgered. 2000. The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans. Geosci. Remote Sens. 38:324329.

    • Search Google Scholar
    • Export Citation
  • Eskridge, R. E., , O. A. Alduchov, , I. V. Chernykh, , Z. Panmao, , A. C. Polansky, , and S. R. Doty. 1995. A Comprehensive Aeorological Reference Data Set (CARDS): Rough and systematic errors. Bull. Amer. Meteor. Soc. 76:17591775.

    • Search Google Scholar
    • Export Citation
  • Fang, P., , M. Bevis, , Y. Bock, , S. Gutman, , and D. Wolfe. 1998. GPS meteorology: Reducing systematic errors in geodetic estimates for zenith delay. Geophys. Res. Lett. 25:35833586.

    • Search Google Scholar
    • Export Citation
  • Flores, A., , A. Escudero, , M. J. Sedo, , and A. Rius. 2000. A near real time system for tropospheric monitoring using IGS hourly data. Earth Planets Space 52:681684.

    • Search Google Scholar
    • Export Citation
  • Ge, M., , E. Calais, , and J. Haase. 2000. Reducing satellite orbit error effects in near real-time GPS zenith tropospheric delay estimation for meteorology. Geophys. Res. Lett. 27:19151919.

    • Search Google Scholar
    • Export Citation
  • Gutman, S. I., and S. G. Benjamin. 2001. The role of ground-based GPS meteorological observations in numerical weather prediction. GPS Solution 4:1624.

    • Search Google Scholar
    • Export Citation
  • Haase, J. Coauthors,. 2001. The contributions of the MAGIC project to the COST 716 objectives of assessing the operational potential of ground-based GPS meteorology on an international scale. Phys. Chem. Earth Solid Earth Geod. 26:433437.

    • Search Google Scholar
    • Export Citation
  • Herring, T. A. 1990. Geodesy by radiointerferometry: The application of Kalman filtering to the analysis of VLBI data. J. Geophys. Res. 95:1256112581.

    • Search Google Scholar
    • Export Citation
  • Iwabuchi, T., , I. Naito, , and N. Mannoji. 2000. A comparison of global positioning system retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands. J. Geophys. Res. 105:45734585.

    • Search Google Scholar
    • Export Citation
  • Jarlemark, P. O. J., and G. Elgered. 1998. Characterizations of temporal variations in atmospheric water vapor. IEEE Trans. Geosci. Remote Sens. 36:319321.

    • Search Google Scholar
    • Export Citation
  • King, R. W., and Y. Bock. 1999. Documentation for the GAMIT GPS analysis software. Release 10.0, Massachusetts Institute of Technology, 206 pp.

    • Search Google Scholar
    • Export Citation
  • Kouba, J., and Y. Mireault. 1998. 1997 Analysis coordinator report. Jet Propulsion Laboratory 1997 IGS Annual Rep. JPL 400-786 10/98, 23–69.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y-H., , X. Zou, , and Y-R. Guo. 1996. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments. Mon. Wea. Rev. 124:122147.

    • Search Google Scholar
    • Export Citation
  • Lemoine, F. G. Coauthors,. 1997. The development of the NASA GSFC and NIMA Joint Geopotential Model. Gravity, Geoid and Marine Geodesy, H. F. J. Segawa and S. Okubo, Eds., International Association of Geodesy Symposia, 461–469.

    • Search Google Scholar
    • Export Citation
  • Lide, D. R. 1992. Handbook of Chemistry and Physics. 73d ed. Chemical Rubber Publishing Company, 2407 pp.

  • Liljegren, J., , B. Lesht, , T. VanHove, , and C. Rocken. 1999. A comparison of integrated water vapor from microwave radiometer, balloon-borne sounding system and global positioning system. Proc. Ninth Atmospheric Radiation Measurement Program Science Team Meeting, San Antonio, TX, Department of Energy, 1–8.

    • Search Google Scholar
    • Export Citation
  • Mader, G. L. cited. 1999. GPS antenna calibration at the National Geodetic Survey. [Available online at http://www.grdl.noaa.gov/GRD/GPS/Projects/ANTCAL/Files/summary.html.].

    • Search Google Scholar
    • Export Citation
  • Majewski, D. 1985. Balanced initial and boundary values for a limited area model. Beitr. Phys. Atmos. 58:147159.

  • Mendes, Vd B. 1999. Modeling the neutral-atmosphere propagation delay in radiometric space techniques. Ph.D. thesis, University of New Brunswick, 349 pp.

    • Search Google Scholar
    • Export Citation
  • Nash, J., , J. B. Elms, , and T. J. Oakley. 1995. Relative humidity sensor performance observed in recent international radiosonde comparisons. Preprints, Ninth Symp. on Meteorological Observations and Instrumentation, Charlotte, NC, Amer. Meteor. Soc., 43–48.

    • Search Google Scholar
    • Export Citation
  • Niell, A. E. 2000. Improved atmospheric mapping functions for VLBI and GPS. Earth Planets Space 52:699702.

  • Ohtani, R. 2002. Results of GPS meteorology project of Japan. Extended Abstracts, COST Action 716 Workshop “Exploitation of Ground-based GPS for Meteorology,” Potsdam, Germany, European Commission, 9.

    • Search Google Scholar
    • Export Citation
  • Pacione, R., , C. Sciarretta, , F. Vespe, , C. Faccani, , R. Ferretti, , E. Fionda, , C. Ferraro, , and A. Nardi. 2001. GPS meteorology: Validation and comparisons with ground-based microwave radiometer and mesoscale model for the Italian GPS permanent stations. Phys. Chem. Earth 26A:139145.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., and D. I. Cox. 1995. Towards a consistent global climatological rawinsonde data-base. Int. J. Climatol. 14:473496.

  • Rocken, C., , R. Ware, , T. Van Hove, , F. Solheim, , C. Alber, , and J. Johnson. 1993. Sensing atmospheric water vapor with the global positioning system. Geophys. Res. Lett. 20:26312634.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., , T. V. Hove, , J. Johnson, , F. Solheim, , R. Ware, , M. Bevis, , S. Chiswell, , and S. Businger. 1995. GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol. 12:468478.

    • Search Google Scholar
    • Export Citation
  • Ruffini, G., , L. P. Kruse, , A. Rius, , B. Burki, , and L. Cucurull. 1999. Estimation of tropospheric zenith delay and gradients over the Madrid area using GPS and WVR data. Geophys. Res. Lett. 26:447450.

    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J. 1972. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, S. W. Henriksen et al., Eds., Amer. Geophys. Union, 247–251.

    • Search Google Scholar
    • Export Citation
  • Sass, B. H., , N. W. Nielsen, , J. U. Jorgensen, , and B. Ammstrup. 1999. The operational HIRLAM system at DMI. DMI Tech. Rep., 99–21, 43 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, E. K., and S. Weintraub. 1953. The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE 41:10351037.

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., , S. G. Benjamin, , B. Schwartz, , and S. I. Gutman. 2000. Using GPS-IPW in a 4-D data assimilation system. Earth Planets Space 52:921926.

    • Search Google Scholar
    • Export Citation
  • Thayer, G. D. 1974. An improved equation for the radio refractive index of air. Radio Sci. 9:803807.

  • Tralli, D. M., and S. M. Lichten. 1990. Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull. Geod. 64:127159.

    • Search Google Scholar
    • Export Citation
  • Tregoning, P., , R. Boers, , D. O'Brien, , and M. Hendy. 1998. Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res. 103:2870128710.

    • Search Google Scholar
    • Export Citation
  • Treuhaft, R. N., and G. E. Lanyi. 1987. The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci. 22:251265.

    • Search Google Scholar
    • Export Citation
  • Vedel, H. 2000. MAGIC project radiosonde data specification document. MAGIC Project Rep. D05210, 4 pp.

  • Vedel, H. 2001. Calculation of delays from meteorological data, comparison of NWP model and observed delays. Phys. Chem. Earth 26A:497502.

    • Search Google Scholar
    • Export Citation
  • Wade, C. G. 1994. An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde. J. Atmos. Oceanic Technol. 11:687700.

    • Search Google Scholar
    • Export Citation
  • Webb, F. H., and J. F. Zumberge. 1997. An introduction to GIPSY/OASIS II. JPL Publ. D-11088, Jet Propulsion Laboratory, Pasadena, CA, 177 pp.

    • Search Google Scholar
    • Export Citation
  • WMO, 1996. Guide to Meteorological Instruments and Methods of Observation. 6th ed. World Meteorological Organization, 420 pp.

  • Yang, S., , B. H. Sass, , G. Elgered, , J. M. Johansson, , and T. R. Emardson. 1999. A comparison of the precipitable water vapor estimates by an NWP simulation and GPS observations. J. Appl. Meteor. 38:941956.

    • Search Google Scholar
    • Export Citation
  • Yuan, L. L., , R. A. Anthes, , R. H. Ware, , C. Rocken, , W. D. Bonner, , M. G. Bevis, , and S. Businger. 1993. Sensing climate change using the global positioning system. J. Geophys. Res. 98:14;th92514;th937.

    • Search Google Scholar
    • Export Citation
  • Zou, X., and Y-H. Kuo. 1996. Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev. 124:28592882.

    • Search Google Scholar
    • Export Citation
  • Zumberge, J. F., , M. B. Heflin, , D. C. Jefferson, , M. M. Watkins, , and F. H. Webb. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102:50055017.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 608 608 32
PDF Downloads 379 379 28

Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean

View More View Less
  • a ACRI-ST, Sophia Antipolis, France
  • | b CNRS Géosciences Azur, Sophia Antipolis, France
  • | c Danish Meteorological Institute, Copenhagen, Denmark
  • | d CNRS Géosciences Azur, Sophia Antipolis, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

As a preliminary step for assessing the impact of global positioning system (GPS) refractive delay data in numerical weather prediction (NWP) models, the GPS zenith tropospheric delays (ZTDs) are analyzed from 51 permanent GPS sites in the western Mediterranean. The objectives are to estimate the error statistics necessary for future assimilation of GPS ZTD data in numerical models and to investigate the variability of the data in this area. The time series, which were derived continuously from November 1998 to June 2001, are compared with independent equivalent values derived from radiosonde profiles and the High-Resolution Limited-Area Model (HIRLAM) NWP model. Based on over two years of data, the difference between radiosonde and GPS ZTD has a standard deviation of 12 mm of delay and a bias of 7 mm of delay. Some sites have biases as high as 14 mm of delay. The bimodal distribution of residuals, with a higher bias for daytime launches, indicates these biases may be due to radiosonde day–night measurement biases. The biases between the GPS ZTD and HIRLAM estimates are smaller, but the 18-mm ZTD standard deviation is significantly greater. The standard deviation of the residuals depends strongly on the amount of humidity, which produces an annual signal because of the much higher variability of water vapor in the summer months. The better agreement with radiosonde data than HIRLAM estimates indicates that the NWP models will benefit from the additional information provided by GPS. The long-term differences between the observational data sources require further study before GPS-derived data become useful for climate studies.

Current affiliation: Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

Current affiliation: GeoForschungsZentrum, Potsdam, Germany

Corresponding author address: Dr. Jennifer Haase, Dept. of Earth and Atmospheric Sciences, Purdue University, CIVL 1397, West Lafayette, IN 47906. jhaase@purdue.edu

Abstract

As a preliminary step for assessing the impact of global positioning system (GPS) refractive delay data in numerical weather prediction (NWP) models, the GPS zenith tropospheric delays (ZTDs) are analyzed from 51 permanent GPS sites in the western Mediterranean. The objectives are to estimate the error statistics necessary for future assimilation of GPS ZTD data in numerical models and to investigate the variability of the data in this area. The time series, which were derived continuously from November 1998 to June 2001, are compared with independent equivalent values derived from radiosonde profiles and the High-Resolution Limited-Area Model (HIRLAM) NWP model. Based on over two years of data, the difference between radiosonde and GPS ZTD has a standard deviation of 12 mm of delay and a bias of 7 mm of delay. Some sites have biases as high as 14 mm of delay. The bimodal distribution of residuals, with a higher bias for daytime launches, indicates these biases may be due to radiosonde day–night measurement biases. The biases between the GPS ZTD and HIRLAM estimates are smaller, but the 18-mm ZTD standard deviation is significantly greater. The standard deviation of the residuals depends strongly on the amount of humidity, which produces an annual signal because of the much higher variability of water vapor in the summer months. The better agreement with radiosonde data than HIRLAM estimates indicates that the NWP models will benefit from the additional information provided by GPS. The long-term differences between the observational data sources require further study before GPS-derived data become useful for climate studies.

Current affiliation: Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

Current affiliation: GeoForschungsZentrum, Potsdam, Germany

Corresponding author address: Dr. Jennifer Haase, Dept. of Earth and Atmospheric Sciences, Purdue University, CIVL 1397, West Lafayette, IN 47906. jhaase@purdue.edu

Save