Abstract
An experimental comparison of spectral aerosol optical depth τa,λ derived from measurements by two spectral radiometers [a LI-COR, Inc., LI-1800 spectroradiometer and a Centre Suisse d'Electronique et de Microtechnique (CSEM) SPM2000 sun photometer] and a broadband field pyrheliometer has been made. The study was limited to three wavelengths (368, 500, and 778 nm), using operational calibration and optical depth calculation procedures. For measurements taken on 32 days spread over 1 yr, the rms difference in τa,λ derived from the two spectral radiometers was less than 0.01 at 500 and 778 nm. For wavelengths shorter than 500 nm and longer than 950 nm, the performance of the LI-1800 in its current configuration did not permit accurate determinations of τa,λ. Estimates of spectral aerosol optical depth from broadband pyrheliometer measurements using two models of the Ångström turbidity coefficient were examined. For the broadband method that was closest to the sun photometer results, the mean (rms) differences in τa,λ were 0.014 (0.028), 0.014 (0.019), and 0.013 (0.014) at 368, 500, and 778 nm. The mean differences are just above the average uncertainties of the sun photometer τa,λ values (0.012, 0.011, and 0.011) for the same wavelengths, as determined through a detailed uncertainty analysis. The amount of atmospheric water vapor is a necessary input to the broadband methods. If upper-air sounding data are not available, water vapor from a meteorological forecast model yields significantly better turbidity results than does using estimates from surface measurements of air temperature and relative humidity.
Corresponding author address: Thomas Carlund, SMHI, 601 76 Norrköping, Sweden. thomas.carlund@smhi.se