Abstract
A three-dimensional computational fluid dynamics (CFD) model is developed to simulate urban flow and dispersion, to understand fluid dynamical processes therein, and to provide practical solutions to some emerging problems of urban air pollution. The governing equations are the Reynolds-averaged equations of momentum, mass continuity, heat, and other scalar (here, passive pollutant) under the Boussinesq approximation. The Reynolds stresses and turbulent fluxes are parameterized using the eddy diffusivity approach. The turbulent diffusivities of momentum, heat, and pollutant concentration are calculated using the prognostic equations of turbulent kinetic energy and its dissipation rate. The set of governing equations is solved numerically on a staggered, nonuniform grid system using a finite-volume method with the semi-implicit method for pressure-linked equation (SIMPLE) algorithm. The CFD model is tested for three different building configurations: infinitely long canyon, long canyon of finite length, and orthogonally intersecting canyons. In each case, the CFD model is shown to simulate urban street-canyon flow and pollutant dispersion well.
Corresponding author address: Jong-Jin Baik, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-742, South Korea. jjbaik@snu.ac.kr