• Al-Khalaf, A. K. 1995. Retrieval of atmospheric water vapor profiles from the Special Sensor Microwave Temperature-2 (SSM/T-2). Ph.D. dissertation, Texas A&M University, 145 pp.

    • Search Google Scholar
    • Export Citation
  • Berg, W., J. Bates, and D. L. Jackson. 1999. Analysis of upper-tropospheric water vapor brightness temperatures from SSM/T2, HIRS, and GMS-5 VISSR. J. Appl. Meteor. 38:580595.

    • Search Google Scholar
    • Export Citation
  • Blankenship, C. B., A. K. Al-Khalaf, and T. T. Wilheit. 2000. Retrieval of water vapor profiles using SSM/T-2 and SSM/I data. J. Atmos. Sci. 57:939955.

    • Search Google Scholar
    • Export Citation
  • Conlee, D. T. 1994. Meteorological information content and non-profiling applications of the SSM/T-2. Ph.D. dissertation, Texas A&M University, 149 pp.

    • Search Google Scholar
    • Export Citation
  • Engelen, R. and G. L. Stephens. 1999. Characterization of water-vapour retrievals from TOVS/HIRS and SSM/T-2 measurements. Quart. J. Roy. Meteor. Soc. 125:331351.

    • Search Google Scholar
    • Export Citation
  • Falcone, V. J. Coauthors,. 1992. DMSP F11 SSM/T-2 calibration and validation data analysis. Environmental Research Paper No. 1111, Phillips Laboratory, Hanscom Air Force Base, MA, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Felde, G. W. and J. D. Pickle. 1995. Retrieval of 91 and 150 GHz earth surface emissivities. J. Geophys. Res. 100:2085520866.

  • Ferraro, R. R. and G. F. Marks. 1995. The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. J. Atmos. Oceanic Technol. 12:755770.

    • Search Google Scholar
    • Export Citation
  • Fleming, H. E., N. C. Gordy, and E. J. Kratz. 1991. The forward problem and corrections for the SSM/T satellite microwave temperature sounder. IEEE Trans. Geosci. Remote Sens. 29:571583.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., T. P. Barnett, and W. P. Elliot. 1991. Space and time scales of global tropospheric moisture. J. Climate 4:9891008.

  • Goldberg, M. D., A. Reale, and G. Kratz. 1998. The use of pattern recognition to derive SSM/T-2 moisture retrievals. Adv. Space Res. 21:385398.

    • Search Google Scholar
    • Export Citation
  • Hinton, B. B., W. S. Olson, D. W. Martin, and B. Auvine. 1992. A passive microwave algorithm for tropical ocean rainfall. J. Appl. Meteor. 31:13791395.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu. Eds.,. . 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, 867 pp.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J. 1985. An updated model for millimeter wave propagation in moist air. Radio Sci. 20:10691089.

  • Lindzen, R. S., M-D. Chou, and A. Y. Hou. 2001. Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc. 82:417432.

  • Liou, K-N. 1980. An Introduction to Atmospheric Radiation. Academic Press, 392 pp.

  • Lojou, J-Y., R. Bernard, and L. Eymard. 1994. A simple method for testing brightness temperatures from satellite microwave radiometers. J. Atmos. Oceanic Technol. 11:387400.

    • Search Google Scholar
    • Export Citation
  • Lutz, R., T. T. Wilheit, J. R. Wang, and R. K. Kakar. 1991. Retrieval of atmospheric water vapor profiles using radiometric measurements at 183 and 90 GHz. IEEE Trans. Geosci. Remote Sens. 29:602609.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., R. W. Fenn, J. E. Selby, F. E. Volz, and J. S. Garing. 1971. Optical properties of the atmosphere. Environmental Research Paper No. 354, AFCRL-71-0279, 85 pp.

    • Search Google Scholar
    • Export Citation
  • Reale, A. L. 2001. NOAA operational sounding products from Advanced-TOVS Polar Orbiting Environmental Satellites. NOAA Tech. Rep. NESDIS 102, U.S. Dept. of Commerce, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Reale, A. L., M. W. Chalfant, and F. H. Tilley. 2000. NESDIS moisture sounding products from AMSU-B and SSM/T-2. Preprints, 10th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., 263–266.

    • Search Google Scholar
    • Export Citation
  • Rieder, M. J. and G. Kirchengast. 1999. Physical–statistical retrieval of water vapor profiles using SSM/T-2 sounder data. Geophys. Res. Lett. 26:13971400.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., M. J. Komichak, and D. H. Staelin. 1982. A method for estimation of atmospheric water vapor profiles by microwave radiometry. J. Appl. Meteor. 21:13641370.

    • Search Google Scholar
    • Export Citation
  • Sasamori, T. J., J. London, and D. V. Hoyt. 1972. Radiation budget of the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 35, Amer. Meteor. Soc., 9–24.

    • Search Google Scholar
    • Export Citation
  • Schaerer, G. and T. T. Wilheit. 1979. A passive microwave technique for profiling of atmospheric water vapor. Radio Sci. 14:371375.

  • Schmetz, J. and O. M. Turpeinen. 1988. Estimation of the upper tropospheric relative humidity field from Meteosat water vapor image data. J. Appl. Meteor. 27:889899.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., B. P. Kirtman, and R. S. Lindzen. 1999. Tropospheric water vapor and climate sensitivity. J. Atmos. Sci. 56:16491658.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C. 1996. Maintenance of the free-tropospheric tropical water vapor distribution. Part I: Clear regime budget. J. Climate 9:29032918.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J. and F. P. Bretherton. 1993. Upper tropospheric relative humidity from the GOES 6.7 μm channel: Method and climatology for July 1987. J. Geophys. Res. 98:1666916688.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J. and J. R. Lanzante. 1996. An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J. Climate 9:12351250.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., J. Schmetz, S. Tjemkes, M. Koenig, A. Arriaga, and E. S. Chung. 2000. Intercalibration of Meteosat-7 water vapor channel with SSM/T2. J. Geophys. Res. 105:1567315680.

    • Search Google Scholar
    • Export Citation
  • Stogryn, A. 1971. Equations for calculating the dielectric constant of saline water. IEEE Trans. Microwave Theory Technol. 19:733736.

    • Search Google Scholar
    • Export Citation
  • Sun, D. Z. and R. S. Lindzen. 1993. Distribution of tropical tropospheric water vapor. J. Atmos. Sci. 50:16441660.

  • Sun, D. Z. and A. H. Oort. 1995. Humidity–temperature relationships in the tropical troposphere. J. Climate 8:19741987.

  • Susskind, J., P. Piraino, L. Rokke, L. Iredell, and A. Mehta. 1997. Characteristics of the TOVS Pathfinder Path A dataset. Bull. Amer. Meteor. Soc. 78:14491472.

    • Search Google Scholar
    • Export Citation
  • Uddstrom, M. J. and L. M. McMillin. 1994. System noise in the NESDIS TOVS forward model. Part I: Specification. J. Appl. Meteor. 33:919947.

    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., R. K. Moore, and A. K. Fung. 1981. Microwave Remote Sensing—Active and Passive. Vol. 1, Microwave Remote Sensing Fundamentals and Radiometry, Artech House, 456 pp.

    • Search Google Scholar
    • Export Citation
  • van de Berg, L. C. J., J. Schmetz, and J. Whitlock. 1995. On the calibration of the Meteosat water vapor channel. J. Geophys. Res. 100:2106921076.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R. Coauthors,. 1983. Profiling atmospheric water vapor by microwave radiometry. J. Climate Appl. Meteor. 22:779788.

  • Wentz, F. J. 1988. User's manual: SSM/I antenna temperature tapes. RSS Tech. Rep. 032588, 35 pp.

  • Wilheit, T. T. 1990. An algorithm for retrieving water vapor profiles in clear and cloudy atmospheres from 183 GHz radiometric measurements: Simulation studies. J. Appl. Meteor. 29:508515.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T. and A. K. Al-Khalaf. 1994. A simplified interpretation of the radiances from SSM/T-2. Meteor. Atmos. Phys. 54:203212.

  • Wilheit, T. T. and K. D. Hutchinson. 1997. Water vapor profile retrievals from SSM/T-2 data constrained by infrared-based cloud parameters. Int. J. Remote Sens. 18:32633277.

    • Search Google Scholar
    • Export Citation
  • Wu, X., J. J. Bates, and S. J. S. Khalsa. 1993. A climatology of the water vapor band brightness temperatures from NOAA operational satellites. J. Climate 6:12821300.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 31 8
PDF Downloads 23 5 0

Estimating Upper-Tropospheric Water Vapor from SSM/T-2 Satellite Measurements

Byung-Ju SohnSchool of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

Search for other papers by Byung-Ju Sohn in
Current site
Google Scholar
PubMed
Close
,
Eui-Seok ChungSchool of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

Search for other papers by Eui-Seok Chung in
Current site
Google Scholar
PubMed
Close
,
Johannes SchmetzEuropean Organisation for Exploitation of Meteorological Satellites, Darmstadt, Germany

Search for other papers by Johannes Schmetz in
Current site
Google Scholar
PubMed
Close
, and
Eric A. SmithNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Eric A. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method and a passive microwave retrieval algorithm have been developed to retrieve upper-tropospheric water vapor (UTW) from Special Sensor Microwave Water Vapor Profiler (SSM/T-2) measurements taken at three discrete frequencies near the 183-GHz water vapor line. The algorithm is based on physical relaxation utilizing statistical covariance information to provide initial-guess profiles and to constrain the updating step in the relaxation process. The scheme incorporates a method to remove SSM/T-2 brightness temperature bias in comparison with collocated simulated brightness temperatures. Correction functions are designed for the three SSM/T-2 183-GHz channels. The algorithm is validated against radiosonde observations and collocated SSM/T-2 brightness temperatures. Under clear-sky and nonprecipitating-cloud conditions, the UTW retrievals exhibit an rms error of 0.68 kg m−2 with integrated water vapor biases below 5% for the upper-tropospheric layers of 700–500 and 500–200 hPa. The retrieval provides an independent source of satellite-derived water vapor information in the upper troposphere, distinct from upper-tropospheric humidity information retrieved from thermal infrared (IR) measurements around the 6.3-μm water vapor absorption band. The microwave retrievals can then be used to cross-check IR retrievals and/or to augment IR retrievals, dependent upon the problem at hand.

Corresponding author address: Prof. Byung-Ju Sohn, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea. sohn@snu.ac.kr

Abstract

A method and a passive microwave retrieval algorithm have been developed to retrieve upper-tropospheric water vapor (UTW) from Special Sensor Microwave Water Vapor Profiler (SSM/T-2) measurements taken at three discrete frequencies near the 183-GHz water vapor line. The algorithm is based on physical relaxation utilizing statistical covariance information to provide initial-guess profiles and to constrain the updating step in the relaxation process. The scheme incorporates a method to remove SSM/T-2 brightness temperature bias in comparison with collocated simulated brightness temperatures. Correction functions are designed for the three SSM/T-2 183-GHz channels. The algorithm is validated against radiosonde observations and collocated SSM/T-2 brightness temperatures. Under clear-sky and nonprecipitating-cloud conditions, the UTW retrievals exhibit an rms error of 0.68 kg m−2 with integrated water vapor biases below 5% for the upper-tropospheric layers of 700–500 and 500–200 hPa. The retrieval provides an independent source of satellite-derived water vapor information in the upper troposphere, distinct from upper-tropospheric humidity information retrieved from thermal infrared (IR) measurements around the 6.3-μm water vapor absorption band. The microwave retrievals can then be used to cross-check IR retrievals and/or to augment IR retrievals, dependent upon the problem at hand.

Corresponding author address: Prof. Byung-Ju Sohn, School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea. sohn@snu.ac.kr

Save