• Adler, R. F. and A. J. Negri. 1988. A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor. 27:3051.

    • Search Google Scholar
    • Export Citation
  • Alexander, G. D. and W. R. Cotton. 1998. The use of cloud-resolving simulations of mesoscale convective systems to build a mesoscale parameterization scheme. J. Atmos. Sci. 55:21372161.

    • Search Google Scholar
    • Export Citation
  • Atlas, D. Ed.,. 1990. Radar in Meteorology. Amer. Meteor. Soc., 806 pp.

  • Battan, L. J. 1973. Radar Observation of the Atmosphere. The University of Chicago Press, 161 pp.

  • Byers, H. R. and R. R. Braham Jr.. 1949. The Thunderstorm. U.S. Government Printing Office, 287 pp.

  • Caniaux, G., J-L. Redelsperger, and J-P. Lafore. 1994. A numerical study of the stratiform region of a fast-moving squall line. Part I: General description and water and heat budgets. J. Atmos. Sci. 51:20462074.

    • Search Google Scholar
    • Export Citation
  • Chin, H-N. S. 1994. The impact of the ice phase and radiation on a midlatitude squall line system. J. Atmos. Sci. 51:33203343.

  • Chong, M. and D. Hauser. 1989. A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev. 117:728744.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D. and R. A. Houze Jr.. 1984. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci. 41:933960.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young. 1996. Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res. 101:915929.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., S. Simpson, and W-K. Tao. 1996. Factors responsible for different precipitation efficiencies between midlatitude and tropical squall simulations. Mon. Wea. Rev. 124:21002125.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M. and J. L. M. McBride. 1989. The vertical distribution of heating in AMEX and GATE cloud clusters. J. Atmos. Sci. 46:34643478.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F. and R. A. Houze Jr.. 1982. Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev. 110:118135.

  • Houghton, H. G. 1968. On precipitation mechanisms and their artificial modification. J. Appl. Meteor. 7:851859.

  • Houze Jr., R. A. 1973. A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci. 30:11121123.

  • Houze Jr., R. A. 1977. Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev. 105:15401567.

  • Houze Jr., R. A. 1982. Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan 60:396410.

  • Houze Jr., R. A. 1993. Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc. 78:21792196.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H. 1984. Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev. 112:15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H. and G. S. Young. 1983. Heat and moisture budgets of tropical mesoscale anvil clouds. J. Atmos. Sci. 40:21382147.

  • Johnson, R. H. and P. J. Hamilton. 1988. The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev. 116:14441472.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., M. A. LeMone, and S. B. Trier. 1997. Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes. J. Atmos. Sci. 54:19611985.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A. and R. A. Houze Jr.. 1979. Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci. 36:669679.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., D. P. Jorgensen, and B. F. Smull. 1994. The impact of two convective systems of sea surface stresses in COARE. Preprints, Sixth Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., 40–44.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville. 1983. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor. 22:10651092.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L. Coauthors,. 2000. A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. Part I: Cloud-resolving models. Quart J. Roy. Meteor. Soc. 126:823863.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J. and E. E. Recker. 1971. Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci. 28:11171133.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A. and P. V. Hobbs. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci. 41:29492972.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., R. A. Houze Jr., M. I. Biggerstaff, and T. Matejka. 1988. The Oklahoma–Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev. 116:14091430.

    • Search Google Scholar
    • Export Citation
  • Ryde, J. W. 1946. The attenuation and radar echoes produced at centimeter wavelengths by various meteorological phenomena. Meteorological Factors in Radio Wave Propagation, Physical Society, 169–188.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlack, S. A. Rutledge, and O. W. Thiele. 1997. Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc. 78:28172836.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. 1980. Downdrafts as linkages in dynamic cumulus seeding effects. J. Appl. Meteor. 19:477487.

  • Simpson, J. and W-K. Tao. 1993. Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Oceanic Sci. 4:73116.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. Adler, and G. North. 1988. A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc. 69:278295.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K. 1983. A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev. 111:479486.

  • Smolarkiewicz, P. K. 1984. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys. 54:325362.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K. and W. W. Grabowski. 1990. The multidimensional positive advection transport algorithm: Nonoscillatory option. J. Comput. Phys. 86:355375.

    • Search Google Scholar
    • Export Citation
  • Soong, S-T. and Y. Ogura. 1973. A comparison between axisymmetric and slab symmetric cumulus models. J. Atmos. Sci. 30:879893.

  • Steiner, M., R. A. Houze Jr., and S. E. Yuter. 1995. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor. 34:19782007.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., X. Li, and K-M. Lau. 1998. Radiative–convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci. 55:23452357.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. and J. Simpson. 1984. Cloud interactions and merging: Numerical simulations. J. Atmos. Sci. 41:29012917.

  • Tao, W-K. and J. Simpson. 1989. Modeling study of a tropical squall-type convective line. J. Atmos. Sci. 46:177202.

  • Tao, W-K. and J. Simpson. 1993. Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci. 4:3572.

  • Tao, W-K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc. 1990. An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor. 29:12321244.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, and R. Adler. 1993a. Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan 71:685700.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., J. Simpson, C-H. Sui, B. Ferrier, S. Lang, J. Scala, M-D. Chou, and K. Pickering. 1993b. Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci. 50:673690.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, C-H. Sui, B. Ferrier, and M-D. Chou. 1996. Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes. J. Atmos. Sci. 53:26242651.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler. 2000. Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan 78:333355.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K. Coauthors,. 2001. Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor. 40:957982.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., W. C. Skamarock, M. A. LeMone, D. B. Parsons, and D. P. Jorgensen. 1996. Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulations. J. Atmos. Sci. 53:28612886.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., W. C. Skamarock, and M. A. LeMone. 1997. Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci. 54:386407.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., W-K. Tao, and J. Simpson. 1996. The impact of a surface layer on a TOGA COARE cloud system development. Mon. Wea. Rev. 124:27532763.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., W-K. Tao, J. Simpson, and S. Lang. 2003. The sensitivity of tropical squall lines to surface fluxes: Cloud resolving model simulations. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Wescott, N. 1984. A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc. 65:219226.

  • Xu, K-W. 1995. Partioning mass, heat, and moisture budgets of explicitly simulated cumulus ensembles into convective and stratiform components. J. Atmos. Sci. 52:123.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 30:611627.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E. and R. A. Houze Jr.. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev. 123:19411963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 158 18
PDF Downloads 305 115 11

Modeling of Convective–Stratiform Precipitation Processes: Sensitivity to Partitioning Methods

S. LangLaboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Search for other papers by S. Lang in
Current site
Google Scholar
PubMed
Close
,
W-K. TaoLaboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by W-K. Tao in
Current site
Google Scholar
PubMed
Close
,
J. SimpsonLaboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by J. Simpson in
Current site
Google Scholar
PubMed
Close
, and
B. FerrierNCEP Environmental Modeling Center, Washington, D.C., and General Sciences Operation, Science Applications International Corporation, Beltsville, Maryland

Search for other papers by B. Ferrier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Six different convective–stratiform separation techniques are compared and evaluated using 2D numerical simulations of a tropical and a midlatitude continental squall line. The techniques used include a texture algorithm applied to surface rainfall, a similar algorithm but with additional criteria applied to vertical velocity and cloud, a texture algorithm applied to vertical velocities below the melting layer, a simple approach that assumes a constant characteristic width for the convective region, a more sophisticated texture algorithm applied to radar reflectivities below the melting layer, and a new technique based on the premise that the fall speed of precipitation particles is large relative to air velocity in regions of stratiform precipitation. Comparisons are made in terms of rainfall, mass fluxes, apparent heating and moistening, hydrometeor contents, reflectivity and vertical-velocity contoured-frequency-with-altitude diagrams (CFAD), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. The texture algorithm applied to surface rain consistently produced the most stratiform rain while the texture algorithm applied to radar reflectivities below the melting layer and the new method comparing air velocities to terminal velocities consistently produced the most convective rain. The simple constant-area method performed comparably to the others in this squall line setting. Observational comparisons within the context of the model were unable to identify a superior technique. However, all of the methods were able to generate CFADs that were consistent with observations. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly as a result of differences in the stratiform region. Methods that found very little stratiform rain resulted in exaggerated rain-normalized stratiform heating profiles.

Corresponding author address: Steve Lang, Mesoscale Atmospheric Processes Branch, Code 912, NASA/GSFC, Greenbelt, MD 20771. lang@agnes.gsfc.nasa.gov

Abstract

Six different convective–stratiform separation techniques are compared and evaluated using 2D numerical simulations of a tropical and a midlatitude continental squall line. The techniques used include a texture algorithm applied to surface rainfall, a similar algorithm but with additional criteria applied to vertical velocity and cloud, a texture algorithm applied to vertical velocities below the melting layer, a simple approach that assumes a constant characteristic width for the convective region, a more sophisticated texture algorithm applied to radar reflectivities below the melting layer, and a new technique based on the premise that the fall speed of precipitation particles is large relative to air velocity in regions of stratiform precipitation. Comparisons are made in terms of rainfall, mass fluxes, apparent heating and moistening, hydrometeor contents, reflectivity and vertical-velocity contoured-frequency-with-altitude diagrams (CFAD), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. The texture algorithm applied to surface rain consistently produced the most stratiform rain while the texture algorithm applied to radar reflectivities below the melting layer and the new method comparing air velocities to terminal velocities consistently produced the most convective rain. The simple constant-area method performed comparably to the others in this squall line setting. Observational comparisons within the context of the model were unable to identify a superior technique. However, all of the methods were able to generate CFADs that were consistent with observations. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly as a result of differences in the stratiform region. Methods that found very little stratiform rain resulted in exaggerated rain-normalized stratiform heating profiles.

Corresponding author address: Steve Lang, Mesoscale Atmospheric Processes Branch, Code 912, NASA/GSFC, Greenbelt, MD 20771. lang@agnes.gsfc.nasa.gov

Save