• Ackerman, S. A., , K. I. Strabala, , W. P. Menzel, , R. A. Frey, , C. C. Moeller, , and L. E. Gumley. 1998. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103:3214132157.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., and B. A. Wielicki. 1994. Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors. J. Appl. Meteor. 33:107117.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , R. F. Arduini, , B. A. Wielicki, , P. Minnis, , and S-C. Tsay. 1994. Multilevel cloud retrieval using multispectral HIRS and AVHRR data: Nighttime oceanic analysis. J. Geophys. Res. 99:54995514.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , D. P. Kratz, , P. Yang, , S. Ou, , Y. Hu, , P. F. Soulen, , and S-C. Tsay. 2000a. Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. I. Data and models. J. Geophys. Res. 105:1176711780.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , P. F. Soulen, , K. I. Strabala, , M. D. King, , S. A. Ackerman, , W. P. Menzel, , and P. Yang. 2000b. Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. II. Cloud thermodynamic phase. J. Geophys. Res. 105:1178111792.

    • Search Google Scholar
    • Export Citation
  • Chen, T., , Y. C. Zhang, , and W. B. Rossow. 2000. Sensitivity of atmospheric radiative heating rate profiles to variations of cloud layer overlap. J. Climate 13:29412959.

    • Search Google Scholar
    • Export Citation
  • Chou, M-D., , M. J. Suarez, , C-H. Ho, , M. Yan, , and K-T. Lee. 1998. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate 11:202214.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., , M. A. Miller, , B. A. Albrecht, , T. P. Ackerman, , J. Verlinde, , D. M. Babb, , R. M. Peters, , and W. J. Syrett. 1995. An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol. 12:201229.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E. Coauthors,. 1999. The Atmospheric Radiation Measurement Program cloud radars: Operational modes. J. Atmos. Oceanic Technol. 16:819827.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., , T. P. Ackerman, , G. G. Mace, , K. P. Moran, , R. T. Marchand, , M. A. Miller, , and B. E. Martner. 2000. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor. 39:645665.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace. 2003. Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Oceanic Technol. 20:4253.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., , B. A. Baum, , W. P. Menzel, , S. A. Ackerman, , C. C. Moeller, , and J. D. Spinhirne. 1999. Validation of CO2-slicing cloud heights computed from MAS radiance data during SUCCESS. J. Geophys. Res. 104:2454724555.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , S. G. Warren, , J. London, , R. M. Chervin, , and R. Jenne. 1982. Atlas of simultaneous occurrence of different cloud types over the ocean. NCAR Tech. Note TN-201+STR, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., , S. G. Warren, , J. London, , R. M. Chervin, , and R. Jenne. 1984. Atlas of simultaneous occurrence of different cloud types over land. NCAR Tech. Note TN-241+STR, 209 pp.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. J. Illingworth. 2000. Deriving cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc. 126:29032909.

  • Intrieri, J. M., , M. D. Shupe, , T. Uttal, , and B. J. McCarty. 2002. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. 107:8030. doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and S. A. Klein. 1999. The role of vertically varying cloud fraction in the parameterization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc. 125:941965.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P. 1995. The correlated k-distribution technique as applied to the AVHRR channels. J. Quant. Spectros. Radiat. Transfer 53:501517.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., and F. G. Rose. 1999. Accounting for the molecular absorption within the spectral range of the CERES window band. J. Quant. Spectros. Radiat. Transfer 61:8395.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., and W-C. Wang. 1997. Cloud overlap effects on general circulation model climate simulations. J. Geophys. Res. 102:1103911047.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and S. Benson-Troth. 2002. Cloud layer overlap characteristics derived from long-term cloud radar data. J. Climate 15:25052515.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., , A. J. Heymsfield, , and M. R. Poellot. 2002. On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res. 107:4815. doi:10.1029/2001JD001308.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , W. L. Smith, , and T. R. Stewart. 1983. Improved cloud motion wind vector and altitude assignment using VAS. J. Appl. Meteor. 22:377384.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , D. P. Wylie, , and K. I. Strabala. 1992. Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with the VAS. J. Appl. Meteor. 31:370385.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., , B. E. Martner, , M. J. Post, , R. A. Kropfli, , and D. C. Welsh. 1998. An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc. 79:443455.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J-J., and C. Jakob. 2000. The response of the ECMWF model to changes in the cloud overlap assumption. Mon. Wea. Rev. 128:17071732.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., , W. L. Barnes, , P. W. Maymon, , H. E. Montgomery, , and H. Ostrow. 1989. MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens. 27:145153.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., , S-C. Tsay, , W. Wiscombe, , and K. Jayaweera. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27:25022509.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., , S. A. Ackerman, , and W. P. Menzel. 1994. Cloud properties inferred from 8–12-μm data. J. Appl. Meteor. 33:212229.

  • Stubenrauch, C. J., , A. D. Del Genio, , and W. B. Rossow. 1997. Implementation of subgrid cloud vertical structure inside a GCM and its effect on the radiation budget. J. Climate 10:273287.

    • Search Google Scholar
    • Export Citation
  • Tian, L., and J. Curry. 1989. Cloud overlap statistics. J. Geophys. Res. 94:99259935.

  • Uttal, T., , E. E. Clothiaux, , T. P. Ackerman, , J. M. Intrieri, , and W. L. Eberhard. 1995. Cloud boundary statistics during FIRE II. J. Atmos. Sci. 52:42764284.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C. 1999. Combined satellite- and surface-based observations of clouds. J. Climate 12:897913.

  • Weare, B. C. 2001. Effects of cloud overlap on radiative feedbacks. Climate Dyn. 17:143150.

  • Wielicki, B. A., and J. A. Coakley Jr.. 1981. Cloud retrieval using infrared sounder data: Error analysis. J. Appl. Meteor. 20:157169.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel. 1999. Eight years of high cloud statistics using HIRS. J. Climate 12:170184.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 174 6
PDF Downloads 20 20 1

Nighttime Multilayered Cloud Detection Using MODIS and ARM Data

View More View Less
  • a NASA Langley Research Center, Hampton, Virginia
  • | b Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
  • | c University of Utah, Salt Lake City, Utah
  • | d University of Wisconsin—Madison, Madison, Wisconsin
  • | e Texas A&M University, College Station, Texas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study reports on recent progress toward the discrimination between pixels containing multilayered clouds, specifically optically thin cirrus overlying lower-level water clouds, and those containing single-layered clouds in nighttime Moderate Resolution Imaging Spectroradiometer (MODIS) data. Cloud heights are determined from analysis of the 15-μm CO2 band data (i.e., the CO2-slicing method). Cloud phase is inferred from the MODIS operational bispectral technique using the 8.5- and 11-μm IR bands. Clear-sky pixels are identified from application of the MODIS operational cloud-clearing algorithm. The primary assumption invoked is that over a relatively small spatial area, it is likely that two cloud layers exist with some areas that overlap in height. The multilayered cloud pixels are identified through a process of elimination, where pixels from single-layered upper and lower cloud layers are eliminated from the data samples. For two case studies (22 April 2001 and 28 March 2001), ground-based lidar and radar observations are provided by the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) Clouds and Radiation Test Bed (CART) site in Oklahoma. The surface-based cloud observations provide independent information regarding the cloud layering and cloud height statistics in the time period surrounding the MODIS overpass.

Corresponding author address: Dr. Bryan A. Baum, NASA/CIMSS, 1225 W. Dayton St., Madison, WI 53706. bryan.baum@ssec.wisc.edu

Abstract

This study reports on recent progress toward the discrimination between pixels containing multilayered clouds, specifically optically thin cirrus overlying lower-level water clouds, and those containing single-layered clouds in nighttime Moderate Resolution Imaging Spectroradiometer (MODIS) data. Cloud heights are determined from analysis of the 15-μm CO2 band data (i.e., the CO2-slicing method). Cloud phase is inferred from the MODIS operational bispectral technique using the 8.5- and 11-μm IR bands. Clear-sky pixels are identified from application of the MODIS operational cloud-clearing algorithm. The primary assumption invoked is that over a relatively small spatial area, it is likely that two cloud layers exist with some areas that overlap in height. The multilayered cloud pixels are identified through a process of elimination, where pixels from single-layered upper and lower cloud layers are eliminated from the data samples. For two case studies (22 April 2001 and 28 March 2001), ground-based lidar and radar observations are provided by the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) Clouds and Radiation Test Bed (CART) site in Oklahoma. The surface-based cloud observations provide independent information regarding the cloud layering and cloud height statistics in the time period surrounding the MODIS overpass.

Corresponding author address: Dr. Bryan A. Baum, NASA/CIMSS, 1225 W. Dayton St., Madison, WI 53706. bryan.baum@ssec.wisc.edu

Save