• André, J. C., and L. Mahrt. 1982. The nocturnal surface inversion and influence of clear-air radiational cooling. J. Atmos. Sci. 39:864878.

    • Search Google Scholar
    • Export Citation
  • André, J. C., , G. de Moor, , P. Lacarrere, , G. Therry, , and R. du Vachat. 1978. Modeling the 24-hour evolution of the mean and turbulent structure of the planetary boundary layer. J. Atmos. Sci. 35:18611883.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., , E. W. Eloranta, , K. Gurer, , and G. J. Tripoli. 1998. An evaluation of the large-eddy simulation option of the regional atmospheric modeling system in simulating a convective boundary layer: A FIFE case study. J. Atmos. Sci. 55:11091130.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag. 1991. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor. 30:327341.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K. 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversion. Bull. Amer. Meteor. Soc. 38:283290.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K. 1962. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res. 67:30953102.

    • Search Google Scholar
    • Export Citation
  • Bowne, N. E., , R. J. Londergan, , D. R. Murray, , and H. S. Borenstein. 1983. Overview, results and conclusions for the EPRI plume model validation and development project: Plains site, EA-3074. Res. Project 1616-1, 234 pp. [Available from Research Reports Center, Box 50490, Palo Alto, CA 94304.].

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., , A. J. Dyer, , R. R. Brook, , D. G. Reid, , and A. G. Troup. 1971. The Wangara Experiment: Boundary layer data. Div. Meteor. Phys. Tech. Paper 19, CSIRO, Melbourne, Australia, 341 pp.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H. 1990. Nieuwstadt's stable boundary layer revisited. Quart. J. Roy. Meteor. Soc. 116:127158.

  • Derbyshire, S. H. 1999. Stable boundary-layer modeling: Established approaches and beyond. Bound.-Layer Meteor. 90:423446.

  • Estournel, C., and D. Guedalia. 1985. Influence of geostrophic wind on atmospheric nocturnal cooling. J. Atmos. Sci. 42:26952698.

  • Estournel, C., and D. Guedalia. 1987. A new parameterization of eddy diffusivities for nocturnal boundary-layer modeling. Bound.-Layer Meteor. 39:191203.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., and R. A. Brost. 1981. Radiative cooling effects within and above the nocturnal boundary layer. J. Atmos. Sci. 38:27302746.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and M. Sharan. 1997. A Lagrangian particle dispersion model for marginally heavy gas dispersion. Atmos. Environ. 31:33693392.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., , M. Sharan, , R. T. McNider, , and M. P. Singh. 1998. Study of radiative and turbulent processes in the stable boundary layer under weak wind conditions. J. Atmos. Sci. 55:954960.

    • Search Google Scholar
    • Export Citation
  • Holt, T., and S. Raman. 1988. A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys. 26:761780.

    • Search Google Scholar
    • Export Citation
  • Hudischewskyj, A. B., and S. D. Reynolds. 1983. A catalog of data for the EPRI plume model validation and developmental data base—plains site, EA-3080. Res. Project 1616-9. [Available from Research Reports Center, Box 50490, Palo Alto, CA 94304.].

    • Search Google Scholar
    • Export Citation
  • Lascer, A., and S. P. S. Arya. 1986. A comparative assessment of mixing-length parameterizations in the stable stratified nocturnal boundary layer (NBL). Bound.-Layer Meteor. 36:5370.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , X. S. Li, , C. J. Zhu, , and B. B. Stankov. 1988. The stably stratified boundary layer over the Great Plains. I. Mean and turbulence structure. Bound.-Layer Meteor. 42:95121.

    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and R. A. Pielke. 1977. A numerical study of the airflow over irregular terrain. Beitr. Phys. Atmos. 50:98113.

  • Mahrt, L. 1999. Stratified atmospheric boundary layers. Bound.-Layer Meteor. 90:375396.

  • Mahrt, L., , J. Sun, , W. Blumen, , T. Delany, , and S. Oncley. 1998. Nocturnal boundary layer regimes. Bound.-Layer Meteor. 88:255278.

  • Malhi, Y. S. 1995. The significance of the diurnal solutions for heat fluxes measured by the temperature fluctuation method in stable conditions. Bound.-Layer Meteor. 74:389396.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and R. A. Pielke. 1981. Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci. 38:21982212.

  • McNider, R. T., , M. P. Singh, , and J. T. Lin. 1993. Diurnal wind structure variations and dispersion of pollutants in the boundary layer. Atmos. Environ. 27A:21992214.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., , D. E. England, , M. J. Friedman, , and X. Shi. 1995. Predictability of the stable atmospheric boundary layer. J. Atmos. Sci. 52:16021614.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and P. J. Sullivan. 1994. A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci. 51:9991022.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom. 1971. Statistical Fluid Mechanics. Vol. 1. MIT Press, 769 pp.

  • Nieuwstadt, F. T. M. 1981. The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Bound.-Layer Meteor. 20:317.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M. 1985. Some aspects of the turbulent stable boundary layer. Bound.-Layer Meteor. 30:3156.

  • Nieuwstadt, F. T. M., and P. G. Driedonks. 1979. The nocturnal boundary layer: A case study compared with model calculations. J. Appl. Meteor. 18:13971405.

    • Search Google Scholar
    • Export Citation
  • Ohya, Y. D., , E. Neff, , and R. N. Meroney. 1997. Turbulence structure in a stratified boundary layer under stable conditions. Bound.-Layer Meteor. 83:139161.

    • Search Google Scholar
    • Export Citation
  • Paegle, J., , W. G. Zdunkowski, , and B. M. Weich. 1976. Implicit differencing of predictive equations of the planetary boundary layer. Mon. Wea. Rev. 104:13211324.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A. 1974. A three-dimensional numerical model of sea breeze over South Florida. Mon. Wea. Rev. 102:115139.

  • Pielke, R. A. 2002. Mesoscale Meteorological Modeling. 2d ed. Academic Press, 676 pp.

  • Press, W. H., , B. P. Flannery, , S. A. Teukolsky, , and W. T. Vetterling. 1986. Numerical Recipes. Cambridge University Press, 818 pp.

  • Saiki, E. M., , C-H. Moeng, , and P. P. Sullivan. 2000. Large eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor. 95:130.

    • Search Google Scholar
    • Export Citation
  • Sasamori, T. 1972. A linear harmonic analysis of atmospheric motion with radiative dissipation. J. Meteor. Soc. Japan 50:505518.

  • Sharan, M., and S. G. Gopalakrishnan. 1997. Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modeling. J. Appl. Meteor. 36:545559.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., , R. T. McNider, , S. G. Gopalakrishnan, , and M. P. Singh. 1995. Bhopal gas leak: A numerical simulation of episodic dispersion. Atmos. Environ. 29:20612070.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., , S. G. Gopalakrishnan, , R. T. McNider, , and M. P. Singh. 1996. Bhopal gas leak: A numerical investigation of prevailing meteorological conditions. J. Appl. Meteor. 35:16371656.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., , T. V. B. P. S. Rama Krishna, , and Aditi. 2003. Surface layer characteristics in a weak wind stable boundary layer. Bound.-Layer Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Singh, M. P., , R. T. McNider, , and J. T. Lin. 1993. An analytical study of diurnal wind-structure variation in the boundary layer and the low-level nocturnal jet. Bound.-Layer Meteor. 63:397423.

    • Search Google Scholar
    • Export Citation
  • Singh, M. P., , R. T. McNider, , R. Meyers, , and S. Gupta. 1997. Nocturnal wind structure over land and dispersion of pollutants: An analytical study. Atmos. Environ. 31:105115.

    • Search Google Scholar
    • Export Citation
  • Stull, R. 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Stull, R., and A. G. M. Driedonks. 1987. Applications of the transilient turbulence parameterization to atmospheric boundary-layer simulations. Bound.-Layer Meteor. 40:209239.

    • Search Google Scholar
    • Export Citation
  • Tjemkes, S. A., and P. G. Duynkerke. 1989. The nocturnal boundary layer: Model calculations compared with observations. J. Appl. Meteor. 28:161175.

    • Search Google Scholar
    • Export Citation
  • van Ulden, A. P., and J. Wieringa. 1996. Atmospheric boundary-layer research in Cabauw. Bound.-Layer Meteor. 78:3469.

  • Yu, T. W. 1977. A comparative study on parameterization of vertical exchange processes. Mon. Wea. Rev. 105:5766.

  • Zilitinkevich, S. S., and D. Mironov. 1996. A multilimit formulation for the equilibrium depth of a stably stratified boundary layer. Bound.-Layer Meteor. 81:325351.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 5
PDF Downloads 12 12 0

Mean Structure of the Nocturnal Boundary Layer under Strong and Weak Wind Conditions: EPRI Case Study

View More View Less
  • a Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
  • | b SAIC and NOAA/NWS/NCEP, Camp Springs, Maryland
  • | c Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The major objective of this study was to analyze the mean structure and evolution of the nocturnal boundary layer (NBL) under strong and weak wind conditions. Meteorological data collected during the plume-validation experiment conducted by the Electric Power Research Institute (EPRI) over a flat homogeneous terrain at Kincaid, Illinois (39°35′N, 89°25′W), were utilized. A one-dimensional meteorological boundary layer model originally developed by R. A. Pielke, modified with turbulent kinetic energy mixing-length closure, a layer-by-layer emissivity-based radiation scheme, and nonlinear nondimensional temperature and wind profiles in the surface layer, was used. In the four cases that were considered, ranging from strong to weak geostrophic forcing, the model reproduced the observed mean profiles, their evolutions in the NBL, and the inertial oscillations reasonably well. The NBL developed into three layers wherein 1) very close to the surface, radiative cooling dominated over turbulence cooling; 2) a layer above, turbulent cooling was the dominant mechanism; and 3) near the top of the turbulent layer and above, clear-air radiative cooling was the dominating mechanism. However, depending on the geostrophic wind, the structure of these layers varied from one situation to another. The wind maximum, which was at least above 200 m of altitude under windy conditions, was located at an altitude of less than 100 m for the weak-wind case, probably because of weaker diffusion in the boundary layer during transition.

Corresponding author address: Prof. Maithili Sharan, Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India. mathilis@cas.iitd.ernet.in

Abstract

The major objective of this study was to analyze the mean structure and evolution of the nocturnal boundary layer (NBL) under strong and weak wind conditions. Meteorological data collected during the plume-validation experiment conducted by the Electric Power Research Institute (EPRI) over a flat homogeneous terrain at Kincaid, Illinois (39°35′N, 89°25′W), were utilized. A one-dimensional meteorological boundary layer model originally developed by R. A. Pielke, modified with turbulent kinetic energy mixing-length closure, a layer-by-layer emissivity-based radiation scheme, and nonlinear nondimensional temperature and wind profiles in the surface layer, was used. In the four cases that were considered, ranging from strong to weak geostrophic forcing, the model reproduced the observed mean profiles, their evolutions in the NBL, and the inertial oscillations reasonably well. The NBL developed into three layers wherein 1) very close to the surface, radiative cooling dominated over turbulence cooling; 2) a layer above, turbulent cooling was the dominant mechanism; and 3) near the top of the turbulent layer and above, clear-air radiative cooling was the dominating mechanism. However, depending on the geostrophic wind, the structure of these layers varied from one situation to another. The wind maximum, which was at least above 200 m of altitude under windy conditions, was located at an altitude of less than 100 m for the weak-wind case, probably because of weaker diffusion in the boundary layer during transition.

Corresponding author address: Prof. Maithili Sharan, Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India. mathilis@cas.iitd.ernet.in

Save