Operational Retrieval of Atmospheric Temperature, Moisture, and Ozone from MODIS Infrared Radiances

Suzanne W. Seemann Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Suzanne W. Seemann in
Current site
Google Scholar
PubMed
Close
,
Jun Li Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Jun Li in
Current site
Google Scholar
PubMed
Close
,
W. Paul Menzel Office of Research and Applications, NOAA/NESDIS, Madison, Wisconsin

Search for other papers by W. Paul Menzel in
Current site
Google Scholar
PubMed
Close
, and
Liam E. Gumley Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Liam E. Gumley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The algorithm for operational retrieval of atmospheric temperature and moisture distribution, total column ozone, and surface skin temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) longwave infrared radiances is presented. The retrieval algorithm uses clear-sky radiances measured by MODIS over land and ocean for both day and night. The algorithm employs a statistical retrieval with an option for a subsequent nonlinear physical retrieval. The synthetic regression coefficients for the statistical retrieval are derived using a fast radiative transfer model with atmospheric characteristics taken from a dataset of global radiosondes of atmospheric temperature, moisture, and ozone profiles. Evaluation of retrieved total precipitable water vapor (TPW) is performed by a comparison with retrievals from the Geostationary Operational Environmental Satellite (GOES) sounder, radiosonde observations, and data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma. Comparisons over one and one-half years show that the operational regression-based MODIS TPW agrees with the microwave radiometer (MWR) TPW at the ARM CART site in Oklahoma with an rmse of 4.1 mm. For moist cases, the physical retrieval improves the retrieval performance. For dry atmospheres (TPW less than 17 mm), both physical and regression-based retrievals from MODIS radiances tend to overestimate the moisture by 3.7 mm on average. Global maps of MODIS atmospheric-retrieved products are compared with the Special Sensor Microwave Imager (SSM/I) moisture and Total Ozone Mapping Spectrometer (TOMS) ozone products. MODIS retrievals of temperature, moisture, and ozone are in general agreement with the gradients and distributions from the other satellites, and MODIS depicts more detailed structure with its improved spatial resolution.

Corresponding author address: Suzanne Wetzel Seemann, CIMSS/SSEC, University of Wisconsin—Madison, Madison, WI 53706. swetzel@ssec.wisc.edu

Abstract

The algorithm for operational retrieval of atmospheric temperature and moisture distribution, total column ozone, and surface skin temperature from the Moderate Resolution Imaging Spectroradiometer (MODIS) longwave infrared radiances is presented. The retrieval algorithm uses clear-sky radiances measured by MODIS over land and ocean for both day and night. The algorithm employs a statistical retrieval with an option for a subsequent nonlinear physical retrieval. The synthetic regression coefficients for the statistical retrieval are derived using a fast radiative transfer model with atmospheric characteristics taken from a dataset of global radiosondes of atmospheric temperature, moisture, and ozone profiles. Evaluation of retrieved total precipitable water vapor (TPW) is performed by a comparison with retrievals from the Geostationary Operational Environmental Satellite (GOES) sounder, radiosonde observations, and data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma. Comparisons over one and one-half years show that the operational regression-based MODIS TPW agrees with the microwave radiometer (MWR) TPW at the ARM CART site in Oklahoma with an rmse of 4.1 mm. For moist cases, the physical retrieval improves the retrieval performance. For dry atmospheres (TPW less than 17 mm), both physical and regression-based retrievals from MODIS radiances tend to overestimate the moisture by 3.7 mm on average. Global maps of MODIS atmospheric-retrieved products are compared with the Special Sensor Microwave Imager (SSM/I) moisture and Total Ozone Mapping Spectrometer (TOMS) ozone products. MODIS retrievals of temperature, moisture, and ozone are in general agreement with the gradients and distributions from the other satellites, and MODIS depicts more detailed structure with its improved spatial resolution.

Corresponding author address: Suzanne Wetzel Seemann, CIMSS/SSEC, University of Wisconsin—Madison, Madison, WI 53706. swetzel@ssec.wisc.edu

Save
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley. 1998. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103:3214132157.

    • Search Google Scholar
    • Export Citation
  • Alishouse, J. C., S. Snyder, J. Vongsathorn, and R. R. Ferraro. 1990. Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens. 28:811816.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P. and A. J. Krueger. 1985. A global climatology of total ozone from the Nimbus-7 Total Ozone Mapping Spectrometer. J. Geophys. Res. 90:79677976.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R. 1992. A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo. 186, 28 pp.

  • Eyre, J. R. and H. M. Woolf. 1988. Transmittance of atmospheric gases in the microwave region: A fast model. Appl. Opt. 25:32443249.

  • Ferraro, R. R., N. C. Grody, F. Weng, and A. Basist. 1996. An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc. 77:891906.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., B. A. Baum, W. P. Menzel, S. A. Ackerman, C. C. Moeller, and J. D. Spinhirne. 1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. J. Geophys. Res. 104:2454724555.

    • Search Google Scholar
    • Export Citation
  • Hannon, S., L. L. Strow, and W. W. McMillan. 1996. Atmospheric infrared fast transmittance models: A comparison of two approaches. Proc. Conf. on Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Denver, CO, SPIE, 94–105.

    • Search Google Scholar
    • Export Citation
  • Harris, B. A. and G. Kelly. 2001. A satellite radiance bias correction scheme for radiance assimilation. Quart. J. Roy. Meteor. Soc. 127:14531468.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M. 1988. GOES-VAS simultaneous temperature-moisture retrieval algorithm. J. Appl. Meteor. 27:705733.

  • King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanré. 1992. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens. 30:227.

    • Search Google Scholar
    • Export Citation
  • Li, J. 1994. Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity. Adv. Atmos. Sci. 11:421426.

    • Search Google Scholar
    • Export Citation
  • Li, J. and H-L. Huang. 1999. Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle. Appl. Optics 38:916923.

    • Search Google Scholar
    • Export Citation
  • Li, J., W. Wolf, W. P. Menzel, W. Zhang, H-L. Huang, and T. H. Achtor. 2000. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor. 39:12481268.

    • Search Google Scholar
    • Export Citation
  • Li, J., C. C. Schmidt, J. P. Nelson, T. J. Schmit, and W. P. Menzel. 2001. Estimation of total ozone from GOES sounder radiances with high temporal resolution. J. Atmos. Oceanic Technol. 18:157168.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D. Coauthors,. 1998. Earth Probe Total Ozone Mapping Spectrometer (TOMS) data products user's guide. NASA Reference Publ. 1998-206895, 64 pp. [Available from NASA Center for AeroSpace Information, 800 Elkridge Landing Rd., Linthicum Heights, MD 21090.].

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P. and J. F. W. Purdom. 1994. Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc. 75:757781.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, G. S. Wade, and D. G. Gray. 1998. Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc. 79:20592078.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S. Coauthors,. 1998. The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation). J. Quant. Spectrosc. Radiat. Transfer 60:665710.

    • Search Google Scholar
    • Export Citation
  • Salisbury, J. W. and D. M. d'Aria. 1992. Emissivity of terrestrial materials in the 8–14 mm atmospheric window. Remote Sens Environ. 42:83106.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., W. F. Feltz, W. P. Menzel, J. Jung, A. P. Noel, J. N. Heil, J. P. Nelson, and G. S. Wade. 2002. Validation and use of GOES sounder moisture information. Wea. Forecasting 17:139154.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, and W. J. Jacob. 1970. A regression method for obtaining real-time temperature and geopotential height profiles from satellite spectrometer measurements and its application to Nimbus 3 “SIRS” observations. Mon. Wea. Rev. 98:582603.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., H. M. Woolf, S. J. Nieman, and T. H. Achtor. 1993. ITPP-5—The use of AVHRR and TIGR in TOVS data processing. Proc. Seventh Int. TOVS Study Conf., Igls, Austria, International Radiation Commission, 443–453.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. L. Jackson, and J. J. Bates. 1994. A comparison of SSM/I and TOVS column water vapor data over the global oceans. Meteor. Atmos. Phys. 54:183201.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. Barnet, and J. Blaisdell. 1998. Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: Retrieval and cloud clearing methodology. Adv. Space Res. 21:369384.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J. 1997. A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res. 102:87038718.

  • Wilber, A. C., D. P. Kratz, and S. K. Gupta. 1999. Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Tech. Publ. NASA/TP-1999-209362, 35 pp. [Available online at http://techreports.larc.nasa.gov/ltrs/.].

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 0 0
Full Text Views 2071 948 162
PDF Downloads 815 208 12