Parameterization of Net All-Wave Radiation for Urban Areas

B. Offerle Indiana University, Bloomington, Indiana

Search for other papers by B. Offerle in
Current site
Google Scholar
PubMed
Close
,
C. S. B. Grimmond Indiana University, Bloomington, Indiana

Search for other papers by C. S. B. Grimmond in
Current site
Google Scholar
PubMed
Close
, and
T. R. Oke University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by T. R. Oke in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A simple scheme to estimate net all-wave radiation (Q*) is evaluated using annual datasets in three urban settings (Chicago, Illinois; Los Angeles, California; and Łódź, Poland). Results are compared with a regression model based on incoming solar radiation and with an urban canopy-layer model incorporating a canyon geometry radiation scheme that requires a larger set of meteorological and surface property inputs. This net all-wave radiation parameterization (NARP) is most sensitive to albedo and the effects of clouds on incoming longwave radiation. Although omitting the diurnal variation of albedo has little impact on overall model fit, its seasonal variability needs to be considered in some cases. For incoming longwave radiation, even clear-sky estimates show a large degree of scatter, and results degrade substantially if cloudy periods are included. NARP shows improvement over the regression approach. If observations of downwelling longwave radiation are included, NARP and the more complex canopy scheme show similar results, near or within the range of instrument error, depending of time of year.

Corresponding author address: Brian Offerle, Atmospheric Science Program, Department of Geography, Indiana University, 120 Student Building, 701 E. Kirkwood Ave., Bloomington, IN 47405-7100. bofferle@indiana.edu

Abstract

A simple scheme to estimate net all-wave radiation (Q*) is evaluated using annual datasets in three urban settings (Chicago, Illinois; Los Angeles, California; and Łódź, Poland). Results are compared with a regression model based on incoming solar radiation and with an urban canopy-layer model incorporating a canyon geometry radiation scheme that requires a larger set of meteorological and surface property inputs. This net all-wave radiation parameterization (NARP) is most sensitive to albedo and the effects of clouds on incoming longwave radiation. Although omitting the diurnal variation of albedo has little impact on overall model fit, its seasonal variability needs to be considered in some cases. For incoming longwave radiation, even clear-sky estimates show a large degree of scatter, and results degrade substantially if cloudy periods are included. NARP shows improvement over the regression approach. If observations of downwelling longwave radiation are included, NARP and the more complex canopy scheme show similar results, near or within the range of instrument error, depending of time of year.

Corresponding author address: Brian Offerle, Atmospheric Science Program, Department of Geography, Indiana University, 120 Student Building, 701 E. Kirkwood Ave., Bloomington, IN 47405-7100. bofferle@indiana.edu

Save
  • Arnfield, A. J. 1982. An approach to the estimation of the surface radiative properties and radiation budgets of cities. Phys. Geogr. 3:97122.

    • Search Google Scholar
    • Export Citation
  • ASHRAE, 1981. ASHRAE Handbook 1981 Fundamentals. ASHRAE, 797 pp.

  • Badescu, V. 1997. Verification of some very simple clear and cloudy sky models to evaluate global solar irradiance. Sol. Energy 61:251264.

    • Search Google Scholar
    • Export Citation
  • Barr, S. and D. L. Sisterson. 2000. Locale analysis report for the Southern Great Plains. U.S. Department of Energy Atmospheric Radiation Measurement Program Tech. Rep. ARM-00-001, 66 pp. [Available online at http://www.arm.gov/docs/sites/sgp/documents/arm00001.pdf.].

    • Search Google Scholar
    • Export Citation
  • Battles, F. J., F. J. Olmo, J. Tovar, and L. Alados-Arboledas. 2000. Comparison of cloudless sky parameterizations of solar irradiance at various Spanish midlatitude locations. Theor. Appl. Climatol. 66:8193.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L. 1987. Seasonal albedo of an urban/rural landscape from satellite observations. J. Climate Appl. Meteor. 26:11691187.

  • Climate Prediction Center, 1999. NOAA/NESDIS and CPC Northern Hemisphere Snow Cover Data. [Available online at http://www.cpc.ncep.noaa.gov/data/snow/.].

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M. and C. E. Duchon. 1999. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor. 38:474480.

    • Search Google Scholar
    • Export Citation
  • De Rooy, W. C. and A. A. M. Holtslag. 1999. Estimation of surface radiation and energy flux densities from single-level weather data. J. Appl. Meteor. 38:526540.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E. and G. E. Wilk. 1994. Field comparisons of direct and component measurements of net radiation under clear skies. J. Appl. Meteor. 33:245251.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B. and T. R. Oke. 1999. Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor. 38:12621292.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B. and T. R. Oke. 2002. Turbulent heat fluxes in urban areas: Observations and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteor. 41:792810.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., C. Souch, and M. D. Hubble. 1996. Influence of tree cover on summertime surface energy balance fluxes, San Gabriel Valley, Los Angeles. Climate Res. 6:4557.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., C. Souch, R. H. Grant, and G. Heisler. 1994. Local scale energy and water exchanges in a Chicago neighborhood. Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project, E. G. McPherson, D. J. Nowak, and R. A. Rowntree, Eds., USDA Forest Service Northeastern Forest Experiment Station, General Tech. Rep. NE-186, 41–61.

    • Search Google Scholar
    • Export Citation
  • Hodges, E. B. and E. A. Smith. 1997. Intercalibration, objective analysis, intercomparison, and synthesis of BOREAS surface net radiation measurements. J. Geophys. Res. 102:2888528900.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M. and A. P. van Ulden. 1983. A simple scheme for daytime estimates of the surface fluxes from routine weather data. J. Climate Appl. Meteor. 22:517529.

    • Search Google Scholar
    • Export Citation
  • Idso, S. D., D. G. Baker, and B. L. Blad. 1969. Relations of radiation fluxes over natural surfaces. Quart. J. Roy. Meteor. Soc. 95:244257.

    • Search Google Scholar
    • Export Citation
  • Iziomon, M. G., H. Mayer, and A. Matzarakis. 2000. Empirical models for estimating net radiative flux: A case study for three mid-latitude sites with orographic variability. Astrophys. Space Sci. 273:313330.

    • Search Google Scholar
    • Export Citation
  • Kaminsky, K. Z. and R. Dubayah. 1997. Estimation of surface net radiation in the boreal forest and northern prairie from shortwave flux measurements. J. Geophys. Res. 102:2970729716.

    • Search Google Scholar
    • Export Citation
  • Kipp, and Zonen. 2001. Instruction manual CNR1 net-radiometer. 46 pp. [Available from Kipp and Zonen BV, P.O. Box 507, Röntgenweg 1, Delft, Netherlands.].

    • Search Google Scholar
    • Export Citation
  • LI-COR, 1991. LI-COR Terrestrial Radiation Sensor, Type SZ instruction manual. 24 pp. [Available from LI-COR, P.O. Box 4425, Lincoln, Nebraska.].

    • Search Google Scholar
    • Export Citation
  • Masson, V. 2000. A physically-based scheme for the urban energy balance in atmospheric models. Bound.-Layer Meteor. 94:357397.

  • Masson, V., C. S. B. Grimmond, and T. R. Oke. 2002. Evaluation of the Town energy balance (TEB) scheme with direct measurements from dry districts in two cities. J. Appl. Meteor. 41:10111026.

    • Search Google Scholar
    • Export Citation
  • Meyn, S. K. 2000. Heat fluxes through roofs and their relevance to estimates of urban heat storage. M.S. thesis, Dept. of Geography, University of British Columbia, Vancouver, BC, Canada, 106 pp. [Available from T. Oke at toke@geog.ubc.ca.].

    • Search Google Scholar
    • Export Citation
  • Newton, T. 1999. Energy balance fluxes in a subtropical city: Miami, FL. M.S. thesis, Dept. of Geography, University of British Columbia, Vancouver, BC, Canada, 140 pp. [Available from T. Oke at toke@geog.ubc.ca.].

    • Search Google Scholar
    • Export Citation
  • Niemelä, S. P., P. Räisänen, and H. Savijärvi. 2001a. Comparison of surface radiative flux parameterizations. Part I: Longwave radiation. Atmos. Res. 58:118.

    • Search Google Scholar
    • Export Citation
  • Niemelä, S. P., P. Räisänen, and H. Savijärvi. 2001b. Comparison of surface radiative flux parameterizations. Part II: Shortwave radiation. Atmos. Res. 58:141154.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J. and S. Planton. 1989. A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 117:536549.

    • Search Google Scholar
    • Export Citation
  • Offerle, B., C. S. B. Grimmond, K. Fortuniak, T. R. Oke, and K. Klysik. 2002. Analysis of long-term observations of urban surface-atmosphere energy exchange. Preprints, Fourth Symp. on the Urban Environment, Norfolk, VA, Amer. Meteor. Soc., 103–104.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R. 1987. Boundary Layer Climates. Routledge, 435 pp.

  • Oke, T. R. 1988. The urban energy balance. Progr. Phys. Geogr. 12:471508.

  • Oke, T. R. 1995. The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, J. E. Cermak et al., Eds., Kluwer Academic, 81–107.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P. Coauthors,. 2002. The energy balance experiment EBEX-2000. Preprints, 25th Conf. on Agricultural and Forest Meteorology, Norfolk, VA, Amer. Meteor. Soc., 1–2.

    • Search Google Scholar
    • Export Citation
  • Paltridge, G. W. and C. M. R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier Scientific, 318 pp.

  • Prata, A. J. 1996. A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc. 122:11271151.

    • Search Google Scholar
    • Export Citation
  • Roth, M. 2000. Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc. 126:941990.

  • Sailor, D. J. and H. Fan. 2002. Modeling the diurnal variability of effective albedo for cities. Atmos. Environ. 36:713725.

  • Schmid, H. P., H. A. Cleugh, C. S. B. Grimmond, and T. R. Oke. 1991. Spatial variability of energy fluxes in suburban terrain. Bound.-Layer Meteor. 54:249276.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D. 1965. Physical Climatology. The University of Chicago Press, 272 pp.

  • Smith, W. L. 1966. Note on the relation between total precipitable water and surface dew point. J. Appl. Meteor. 5:726727.

  • Sozzi, R., A. Salcido, R. Saldaña Flores, and T. Georgiadis. 1999. Daytime net radiation parameterization for Mexico City suburban areas. Atmos. Res. 50:5368.

    • Search Google Scholar
    • Export Citation
  • Sugita, M. and W. Brutsaert. 1993. Cloud effect in the estimation of instantaneous downward longwave radiation. Water Resour. Res. 29:599605.

    • Search Google Scholar
    • Export Citation
  • USEPA, 1999. PCRAMMET User's Guide. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Division, Tech. Rep. EPA-454/B-96-001 95 pp. [Available online at http://www.epa.gov/scram001/userg/relat/pcramtd.pdf.].

    • Search Google Scholar
    • Export Citation
  • van Ulden, A. P. and A. A. M. Holtslag. 1985. Estimation of atmospheric boundary layer parameters for diffusion applications. J. Climate Appl. Meteor. 24:11961207.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1465 483 129
PDF Downloads 804 179 15