• Allwine, K. J., , X. Bian, , C. D. Whiteman, , and H. W. Thistle. 1997. VALDRIFT—A valley atmospheric dispersion model. J. Appl. Meteor. 36:10761087.

    • Search Google Scholar
    • Export Citation
  • Anquetin, S., , C. Guilbaud, , and J-P. Chollet. 1998. The formation and destruction of inversion layers within a deep valley. J. Appl. Meteor. 37:15471560.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., and T. B. McKee. 1983. Dynamical model simulation of the morning boundary layer development in deep mountain valleys. J. Climate Appl. Meteor. 22:341351.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., and T. B. McKee. 1985. Effect of shear, stability and valley characteristics on the destruction of temperature inversions. J. Climate Appl. Meteor. 24:822832.

    • Search Google Scholar
    • Export Citation
  • Brehm, M., and C. Freytag. 1982. Erosion of the night-time thermal circulation in an Alpine valley. Arch. Meteor. Geophys. Bioklimatol., Ser. B 31:331352.

    • Search Google Scholar
    • Export Citation
  • Clements, W. E., , J. A. Archuleta, , and P. H. Gudiksen. 1989. Experimental design of the ASCOT field study. J. Appl. Meteor. 28:405413.

    • Search Google Scholar
    • Export Citation
  • de Wekker, S. F. J., , S. Zhong, , J. D. Fast, , and C. D. Whiteman. 1998. A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J. Appl. Meteor. 37:606622.

    • Search Google Scholar
    • Export Citation
  • Hennemuth, B. 1985. Temperature field and energy budget of a small Alpine valley. Beitr. Phys. Atmos. 58:545559.

  • Hennemuth, B. 1986. Thermal asymmetry and cross-valley circulations in a small Alpine valley. Bound.-Layer Meteor. 36:371394.

  • Kelly, R. D. 1988. Asymmetric removal of temperature inversions in a high mountain valley. J. Appl. Meteor. 27:664673.

  • Kimura, F., and T. Kuwagata. 1995. Horizontal heat fluxes over complex terrain computed using a simple mixed-layer model and a numerical model. J. Appl. Meteor. 34:549558.

    • Search Google Scholar
    • Export Citation
  • Kuwagata, T., and F. Kimura. 1995. Daytime boundary layer evolution in a deep valley. Part I: Observations in the Ina Valley. J. Appl. Meteor. 34:10821091.

    • Search Google Scholar
    • Export Citation
  • Li, J-G., and B. W. Atkinson. 1999. Transition regimes in valley airflows. Bound.-Layer Meteor. 91:385411.

  • Matzinger, N., , M. Andretta, , E. van Gorsel, , R. Vogt, , A. Ohmura, , and M. W. Rotach. 2003. Surface radiation budget in an Alpine valley. Quart. J. Roy. Meteor. Soc. 129:877895.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and R. A. Pielke. 1981. Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci. 38:21982212.

  • McNider, R. T., and R. A. Pielke. 1984. Numerical simulation of slope and mountain flows. J. Climate Appl. Meteor. 23:14411453.

  • Müller, H., and C. D. Whiteman. 1988. Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. J. Appl. Meteor. 27:188194.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton. 1989. A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 117:536549.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., , J. E. Bossert, , T. B. McKee, , and R. A. Pielke. 2000. The interaction of katabatic flow and mountain waves. Part I: Observations and idealized simulations. J. Atmos. Sci. 57:19191936.

    • Search Google Scholar
    • Export Citation
  • Sakiyama, S. K. 1990. Drainage flow characteristics and inversion breakup in two Alberta Mountain valleys. J. Appl. Meteor. 29:10151030.

    • Search Google Scholar
    • Export Citation
  • Savov, P. B., , T. S. Skakalova, , I. N. Kolev, , and F. L. Ludwig. 2002. Lidar investigation of the temporal and spatial distribution of atmospheric aerosols in mountain valleys. J. Appl. Meteor. 41:528541.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis. 1997. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Tang, W., and L. Peng. 1983. A numerical model of slopewind circulation regimes in a V-shaped valley. Arch. Meteor. Geophys. Bioklimatol., Ser. B 32:361380.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D. 1982. Breakup of temperature inversions in deep mountain valleys: Part I. Observations. J. Appl. Meteor. 21:270289.

  • Whiteman, C. D. 1990. Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes Over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 5–42.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D. 2000. Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Whiteman, C. D., and T. B. McKee. 1982. Breakup of temperature inversions in deep mountain valleys. Part II: Thermodynamic model. J. Appl. Meteor. 21:290302.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and S. Barr. 1986. Atmospheric mass transport by along-valley wind systems in a deep Colorado Valley. J. Climate Appl. Meteor. 25:12051212.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , K. J. Allwine, , L. J. Fritschen, , M. M. Orgill, , and J. R. Simpson. 1989a. Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J. Appl. Meteor. 28:414426.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., , K. J. Allwine, , L. J. Fritschen, , M. M. Orgill, , and J. R. Simpson. 1989b. Deep valley radiation and surface energy budget microclimates. Part II: Energy budget. J. Appl. Meteor. 28:427437.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , K. K. Droegemeier, , V. Wong, , A. Shapiro, , and K. Brewster. 1995. A.R.P.S. version 4.0 user's guide. Center for Analysis and Prediction of Storms, 380 pp.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , K. K. Droegemeier, , and V. Wong. 2000. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys. 75:161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M. Coauthors,. 2001. The Advanced Regional Prediction System (ARPS)—A multi-scale non-hydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys. 76:134165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 3
PDF Downloads 33 33 1

A Numerical Study of Inversion-Layer Breakup and the Effects of Topographic Shading in Idealized Valleys

View More View Less
  • 1 Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California
© Get Permissions
Restricted access

Abstract

Numerical simulations of inversion-layer breakup in idealized steep valleys are performed using the Advanced Regional Prediction System (ARPS) to investigate the effects of valley width and depth, and topographic shade. Simulations of the diurnal pattern of slope winds under weak synoptic conditions are presented in a valley of depth 500 m and floor width 1200 m. Typical up- and downslope wind circulations are reproduced, and their influence on the stability in the valley is analyzed and characterized using the classifications of Whiteman. A systematic investigation of the inversion-layer characteristics in a set of 24 valleys of varying depth and width is conducted. For the narrow-valley cases, the depth and lifetime of the stable layer increase as the depth of the valley increases. For wide valleys, however, the stable-layer depth and lifetime converge toward a single value regardless of the valley depth. An original subroutine accounting for topographic shading is introduced and its effects on both the slope winds and the inversion breakup process are discussed. Results from tests in idealized valleys indicate that topographic shading can delay inversion-layer breakup and, therefore, should be included, when appropriate, in numerical simulations of flow over complex terrain.

Corresponding author address: Fotini Katopodes Chow, Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Terman Engineering Center M-13, Stanford, CA 94305-4020. katopodes@stanfordalumni.org

Abstract

Numerical simulations of inversion-layer breakup in idealized steep valleys are performed using the Advanced Regional Prediction System (ARPS) to investigate the effects of valley width and depth, and topographic shade. Simulations of the diurnal pattern of slope winds under weak synoptic conditions are presented in a valley of depth 500 m and floor width 1200 m. Typical up- and downslope wind circulations are reproduced, and their influence on the stability in the valley is analyzed and characterized using the classifications of Whiteman. A systematic investigation of the inversion-layer characteristics in a set of 24 valleys of varying depth and width is conducted. For the narrow-valley cases, the depth and lifetime of the stable layer increase as the depth of the valley increases. For wide valleys, however, the stable-layer depth and lifetime converge toward a single value regardless of the valley depth. An original subroutine accounting for topographic shading is introduced and its effects on both the slope winds and the inversion breakup process are discussed. Results from tests in idealized valleys indicate that topographic shading can delay inversion-layer breakup and, therefore, should be included, when appropriate, in numerical simulations of flow over complex terrain.

Corresponding author address: Fotini Katopodes Chow, Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Terman Engineering Center M-13, Stanford, CA 94305-4020. katopodes@stanfordalumni.org

Save