• Adrian, G., and F. Fiedler. 1991. Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations. Contrib. Atmos. Phys. 64:2748.

    • Search Google Scholar
    • Export Citation
  • Aniol, R., , J. Riedl, , and M. Dieringer. 1980. Über kleinräumige und zeitliche Variationen der Niederschlagsintensität (On small-scale spatial and temporal variations of precipitation intensity). Meteor. Rundsch. 33:5056.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , P. Willis, , and F. Marks. 1995. The effects of convective up- and downdrafts on reflectivity–rain rate relations and water budgets. Preprints, 27th Int. Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 19–22.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , C. W. Ulbrich, , F. D. Marks Jr., , E. Amitai, , and C. R. Williams. 1999. Systematic variation of drop size and radar–rainfall relations. J. Geophys. Res. 104:61556169.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M. 1987. Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev. 115:10531070.

  • Battan, L. J. 1973. Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Battan, L. J. 1976. Vertical air motions and the ZR relation. J. Appl. Meteor. 15:11201121.

  • Beard, K. V. 1985. Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol. 2:468471.

    • Search Google Scholar
    • Export Citation
  • Dölling, I. G., , J. Joss, , and J. Riedl. 1998. Systematic variations of ZR relationships from drop size distributions measured in northern Germany during seven years. Atmos. Res. 47:–48. 635649.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N. 1998. Numerische Modellierung topographisch induzierter hochreichender konvektiver Wolken (Numerical modeling of topographically induced deep convective clouds). Ann. Meteor. 37:465466.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N. 1999. Mesoskalige numerische Simulation von Wolken- und Niederschlagsprozessen über strukturiertem Gelände (Mesoscale numerical modeling of cloud and precipitation processes over complex terrain). Ph.D. dissertation, University of Karlsruhe, 127 pp. [Available online at http://www.op.dlr.de/~pa4p/.].

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., and K. D. Beheng. 2001. The influence of deep convective motions on the variability of ZR relations. Atmos. Res. 59:–60. 1539. [Available online at http//www.op.dlr.de/~pa4p/.].

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., , J. J. Gourley, , and T. Fehr. 2002. Vertical profiles of radar reflectivity and rain rate: Observational and modeling results. ERAD Publications Series, Vol. 1, 243–249. [Available online at http//www.copernicus.org/erad/online/erad-243.pdf.].

    • Search Google Scholar
    • Export Citation
  • Douglas, R. H. 1964. Hail size distributions. Preprints, World Conf. on Radio Meteorology and Proc. 11th Radar Meteorology Conf., Boulder, CO, Amer. Meteor. Soc., 146–149.

    • Search Google Scholar
    • Export Citation
  • Fehr, T. 2000. Mesoskalige Modellierung der Produktion und des dreidimensionalen Transports von Stickoxiden in Gewittern (Mesoscale modeling of the production and three-dimensional transport of nitrogen oxides in thunderstorms). Ph.D. dissertation, University of Munich, 116 pp. [Available online at http://www.op.dlr.de/~pa10/.].

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. du Toit. 1969. Terminal velocity of raindrops aloft. J. Appl. Meteor. 8:249253.

  • Gourley, J. J., , R. A. Maddox, , K. W. Howard, , and D. W. Burgess. 2002. An exploratory multisensor technique for quantitative estimation of stratiform rainfall. J. Hydrometeor. 3:166180.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , J. Dudhia, , and D. R. Stauffer. 1994. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Rep. NCAR/TN-398 + STR, 122 pp.

    • Search Google Scholar
    • Export Citation
  • Hannesen, R., , N. Dotzek, , H. Gysi, , and K. D. Beheng. 1998. Case study of a tornado in the Upper Rhine valley. Meteor. Z. 7:163170. [Available online at http://www.op.dlr.de/~pa4p/.].

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and A. B. Kostinski. 2002. When is rain steady? J. Appl. Meteor. 41:8390.

  • Jordan, P., , A. Seed, , and G. Austin. 2000. Sampling errors in radar estimates of rainfall. J. Geophys. Res. 105:22472257.

  • Joss, J., and A. Waldvogel. 1990. Precipitation measurement and hydrology. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 577–618.

    • Search Google Scholar
    • Export Citation
  • Kessler, E. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson. 1978. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 35:10701096.

  • Marshall, J. S., and W. McK. Palmer. 1948. The distribution of raindrops with size. J. Meteor. 5:165166.

  • Sauvageot, H. 1992. Radar Meteorology. Artech House, 366 pp.

  • Smith, P. L. 1984. Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor. 23:12581260.

  • Smith, P. L., , C. G. Myers, , and H. D. Orville. 1975. Radar reflectivity factor calculations in numerical cloud models using bulk parameterizations of precipitation. J. Appl. Meteor. 14:11561165.

    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and J. Simpson. 1993. The Goddard Cumulus Ensemble model. Part 1: Model description. Terr. Atmos. Oceanic Sci. 4:3572.

  • Tartaglione, N., , A. Buzzi, , and M. Fantini. 1996. Supercell simulations with simple ice parameterization. Meteor. Atmos. Phys. 58:139149.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert. 2001. Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res. 58:1939.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev. 110:504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp. 1984. The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev. 112:24792498.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and J. B. Klemp. 1981. A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci. 38:15811600.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and E. A. Brandes. 1979. Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc. 60:10481058.

  • Zawadzki, I. 1984. Factors affecting the precision of radar measurements of rain. Preprints, 22d Int. Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 1
PDF Downloads 0 0 0

Relationship between Precipitation Rates at the Ground and Aloft—A Modeling Study

View More View Less
  • 1 Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany
© Get Permissions
Restricted access

Abstract

Two cloud-resolving mesoscale models, the Karlsruhe Atmospheric Mesoscale Model (KAMM) and the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), were used to study reflectivity factor–rain-rate (ZR) relationships and instantaneous and horizontally averaged profiles of precipitation rate for convective storms of varying intensity. Simulations were conducted for idealized terrain. KAMM modeled a single shower cloud; MM5 was used to study split-storm supercell development. Both models consistently confirm analytical results from earlier studies: convective drafts and stratification of air density significantly alter the local rain rate and, therefore, also any ZR relation relying on conditions of stagnant air and sea level air density. Air density effects can be almost completely corrected for by a recently proposed algorithm, but effects of convective drafts remain. They can lead to upward precipitation mass fluxes of significant magnitude and subsequent horizontal displacement of precipitation. Applicability of simple ZR relations over complex terrain with distinct watershed boundaries will be strongly degraded by such convection effects on precipitation mass fluxes.

Corresponding author address: Dr. Nikolai Dotzek, DLR—Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany. nikolai.dotzek@dlr.de

Abstract

Two cloud-resolving mesoscale models, the Karlsruhe Atmospheric Mesoscale Model (KAMM) and the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), were used to study reflectivity factor–rain-rate (ZR) relationships and instantaneous and horizontally averaged profiles of precipitation rate for convective storms of varying intensity. Simulations were conducted for idealized terrain. KAMM modeled a single shower cloud; MM5 was used to study split-storm supercell development. Both models consistently confirm analytical results from earlier studies: convective drafts and stratification of air density significantly alter the local rain rate and, therefore, also any ZR relation relying on conditions of stagnant air and sea level air density. Air density effects can be almost completely corrected for by a recently proposed algorithm, but effects of convective drafts remain. They can lead to upward precipitation mass fluxes of significant magnitude and subsequent horizontal displacement of precipitation. Applicability of simple ZR relations over complex terrain with distinct watershed boundaries will be strongly degraded by such convection effects on precipitation mass fluxes.

Corresponding author address: Dr. Nikolai Dotzek, DLR—Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany. nikolai.dotzek@dlr.de

Save