A Simplified Diagnostic Model of Orographic Rainfall for Enhancing Satellite-Based Rainfall Estimates in Data-Poor Regions

Chris Funk Geography Department, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Chris Funk in
Current site
Google Scholar
PubMed
Close
and
Joel Michaelsen Geography Department, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Joel Michaelsen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An extension of Sinclair's diagnostic model of orographic precipitation (“VDEL”) is developed for use in data-poor regions to enhance rainfall estimates. This extension (VDELB) combines a 2D linearized internal gravity wave calculation with the dot product of the terrain gradient and surface wind to approximate terrain-induced vertical velocity profiles. Slope, wind speed, and stability determine the velocity profile, with either sinusoidal or vertically decaying (evanescent) solutions possible. These velocity profiles replace the parameterized functions in the original VDEL, creating VDELB, a diagnostic accounting for buoyancy effects. A further extension (VDELB*) uses an on/off constraint derived from reanalysis precipitation fields. A validation study over 365 days in the Pacific Northwest suggests that VDELB* can best capture seasonal and geographic variations. A new statistical data-fusion technique is presented and is used to combine VDELB*, reanalysis, and satellite rainfall estimates in southern Africa. The technique, matched filter regression (MFR), sets the variance of the predictors equal to their squared correlation with observed gauge data and predicts rainfall based on the first principal component of the combined data. In the test presented here, mean absolute errors from the MFR technique were 35% lower than the satellite estimates alone. VDELB assumes a linear solution to the wave equations and a Boussinesq atmosphere, and it may give unrealistic responses under extreme conditions. Nonetheless, the results presented here suggest that diagnostic models, driven by reanalysis data, can be used to improve satellite rainfall estimates in data-sparse regions.

Corresponding author address: Chris Funk, Geography Department, University of California, Santa Barbara, Santa Barbara, CA 93106. chris@geog.ucsb.edu

Abstract

An extension of Sinclair's diagnostic model of orographic precipitation (“VDEL”) is developed for use in data-poor regions to enhance rainfall estimates. This extension (VDELB) combines a 2D linearized internal gravity wave calculation with the dot product of the terrain gradient and surface wind to approximate terrain-induced vertical velocity profiles. Slope, wind speed, and stability determine the velocity profile, with either sinusoidal or vertically decaying (evanescent) solutions possible. These velocity profiles replace the parameterized functions in the original VDEL, creating VDELB, a diagnostic accounting for buoyancy effects. A further extension (VDELB*) uses an on/off constraint derived from reanalysis precipitation fields. A validation study over 365 days in the Pacific Northwest suggests that VDELB* can best capture seasonal and geographic variations. A new statistical data-fusion technique is presented and is used to combine VDELB*, reanalysis, and satellite rainfall estimates in southern Africa. The technique, matched filter regression (MFR), sets the variance of the predictors equal to their squared correlation with observed gauge data and predicts rainfall based on the first principal component of the combined data. In the test presented here, mean absolute errors from the MFR technique were 35% lower than the satellite estimates alone. VDELB assumes a linear solution to the wave equations and a Boussinesq atmosphere, and it may give unrealistic responses under extreme conditions. Nonetheless, the results presented here suggest that diagnostic models, driven by reanalysis data, can be used to improve satellite rainfall estimates in data-sparse regions.

Corresponding author address: Chris Funk, Geography Department, University of California, Santa Barbara, Santa Barbara, CA 93106. chris@geog.ucsb.edu

Save
  • Arakawa, A. 1972. Design of the UCLA general circulation model. Department of Meteorology, University of California, Los Angeles Tech. Rep. 7, 116 pp.

    • Search Google Scholar
    • Export Citation
  • Bader, M. J. and W. T. Roach. 1977. Orographic rainfall in warm sectors of depressions. Quart. J. Roy. Meteor. Soc 103:269280.

  • Barros, A. P. and D. P. Lettenmaier. 1993. Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev 121:11951214.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T. 1960. Physics of Precipitation. Amer. Geophys. Union, 30 pp.

  • Bradley, M. M. 1985. The numerical simulation of orographic storms, Ph.D. dissertation, University of Illinois at Urbana– Champaign, 263 pp.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall. 1994. Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona. J. Atmos. Sci 51:4867.

    • Search Google Scholar
    • Export Citation
  • Carruthers, D. J. and T. W. Choularton. 1982. Airflow over hills of moderate slope. Quart. J. Roy. Meteor. Soc 108:603624.

  • Carruthers, D. J. and J. C. R. Hunt. 1990. The role of mountain flows in making clouds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 229–299.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L. and W. R. Peltier. 1977. On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci 34:17151730.

  • Clark, T. L. and R. D. Farley. 1984. Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci 41:329350.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L. and W. R. Peltier. 1984. Critical level reflection and the resonant growth of nonlinear mountain wave. J. Atmos. Sci 41:31223134.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L. and W. D. Hall. 1991. Multi-domain simulations of the time dependent Navier Stokes equation: Benchmark error analyses of nesting procedures. J. Comput. Phys 92:456481.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., W. D. Hall, and J. L. Coen. 1996. Source code documentation for the Clark–Hall cloud-scale model: Code version G3CH01. NCAR Tech. Note. NCAR/TN-426+STR, 174 pp.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G. 1975. A representation of the effects of topography on surface rainfall within moving baroclinic disturbances. Quart. J. Roy. Meteor. Soc 101:407422.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R. and R. A. Anthes. 1989. Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Daly, C., R. P. Neilson, and D. L. Phillips. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor 33:140158.

    • Search Google Scholar
    • Export Citation
  • Dornbrack, A. and C. J. Nappo. 1997. A note on the application of linear wave theory at a critical level. Bound.-Layer Meteor 82:399416.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R. 1986. Another look at downslope windstorms. Part I: On the development of analogs to super-critical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci 43:25272543.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R. 1990. Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R. 1992. Two layer solutions to Long's equation for vertically propagating mountain waves: How good is linear theory? Quart. J. Roy. Meteor. Soc 118:415433.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A. and E. Palm. 1960. Wave energy transfer in stationary gravity waves. Geofys. Publ 22:123.

  • Funk, C., J. Theiler, D. Roberts, and C. Borel. 2001. Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery. IEEE Trans. Geosci. Remote Sens 39:14101419.

    • Search Google Scholar
    • Export Citation
  • Funk, C., T. Magadazire, G. Husak, J. Verdin, J. Michaelsen, and J. Rowland. 2002. Forecasts of 2002/2003 southern Africa maize growing conditions based on October 2002 sea surface temperature and climate fields. Famine Early Warning System Network Special Rep., 2 pp.

    • Search Google Scholar
    • Export Citation
  • Funk, C., J. Michaelsen, J. Verdin, G. Artan, G. Husak, G. Senay, H. Gadain, and T. Magadzire. 2003. The collaborative historical African rainfall model: Description and evaluation. Int. J. Climatol 23:4766.

    • Search Google Scholar
    • Export Citation
  • Goldstein, S. 1931. On the stability of super-imposed streams of fluids of different densities. Proc. Roy. Soc. London A132:524548.

  • Grimes, D. I. F., E. Pardo, and R. Bonifacio. 1999. Optimal areal rainfall estimation using raingauges and satellite date. J. Hydrol 222:93108.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J. 1971. Numerical Weather Prediction. John Wiley and Sons, 317 pp.

  • Herman, A., V. B. Kumar, P. A. Arkin, and J. V. Kousky. 1997. Objectively determined 10-day african rainfall estimates created for famine early warning systems. Int. J. Climatol 18:147164.

    • Search Google Scholar
    • Export Citation
  • Hevesi, J. A., J. D. Istok, and A. L. Flint. 1992a. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: Structural analysis. J. Appl. Meteor 31:661676.

    • Search Google Scholar
    • Export Citation
  • Hevesi, J. A., A. L. Flint, and J. D. Istok. 1992b. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps. J. Appl. Meteor 31:677688.

    • Search Google Scholar
    • Export Citation
  • Hill, F. F. 1983. The use of average annual rainfall to derive estimates of orographic enhancement of frontal rain over England and Wales for different wind directions. J. Climatol 3:113129.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R. 1992. An Introduction to Dynamic Meteorology. 3d ed. Academic Press, 507 pp.

  • Hunt, J. C. R., S. Leibovich, and K. J. Richards. 1988. Turbulent sheer flow over hills. Quart. J. Roy. Meteor. Soc 114:14351470.

  • Kalnay, E. Coauthors 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc 77:437471.

  • Kanamitsu, M. 1989. Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting 4:335342.

  • Kanamitsu, M. Coauthors 1991. Recent changes implemented into the global forecast system at NMC. Wea. Forecasting 6:425435.

  • Kyriakidis, P. C., J. Kim, and N. L. Miller. 2001. Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J. Appl. Meteor 40:18551877.

    • Search Google Scholar
    • Export Citation
  • Long, R. R. 1953. Some aspects of the flow of stratified fluids, I: A theoretical investigation. Tellus 5:4258.

  • Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, and J. Middlecoff. 2001. Development of a next generation regional weather research and forecast model. Developments in Teracomputing: Proc. 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology, Walter Zwieflhofer and Norbert Kreitz, Eds., World Scientific, 269–276.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J. 2002. An Introduction to Atmospheric Gravity Waves. Academic Press, 276 pp.

  • Orville, H. D. 1965. A numerical study of the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci 22:684689.

  • Orville, H. D. 1968. Ambient wind effects on the initiation and development of cumulus clouds over mountains. J. Atmos. Sci 25:385403.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R. and T. L. Clark. 1979. The evolution and stability of finite amplitude mountain waves: Part 2: Surface drag and observed windstorms. J. Atmos. Sci 36:14981529.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C. and R. S. Vose. 1997. An overview of the Global Historical Climatology Network temperature data base. Bull. Amer. Meteor. Soc 78:28372849.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A. Coauthors 1992. A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys 49:6991.

  • Queney, P. 1948. The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc 29:1625.

  • Rhea, J. O. 1978. Orographic precipitation model for hydrometeorological use. Colorado State University Atmospheric Science Paper 278, 198 pp.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S. 1955. Theory of airflow over mountains, Part 4: Separation of flow. Quart. J. Roy. Meteor. Soc 81:340350.

  • Sela, J. G. 1980. Spectral modeling at the National Meteorological Center. Mon. Wea. Rev 108:12791291.

  • Sinclair, M. 1994. A diagnostic model for estimating orographic precipitation. J. Appl. Meteor 33:11631175.

  • Smith, R. B. 1979. Some aspects of the quasi-geostrophic flow over mountains. J. Atmos. Sci 36:23852393.

  • Smith, R. B. 1980. Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus 32:348364.

  • Smith, R. B. 1982. Synoptic observations and theory of orographically disturbed wind and pressure. J. Atmos. Sci 39:6070.

  • Smith, R. B. 2003. A linear upslope-time-delay model for orographic precipitation. J. Hydrol 282:29.

  • Smith, R. B. and Y-L. Lin. 1982. The addition of heat to a stratifed airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc 108:353378.

    • Search Google Scholar
    • Export Citation
  • Stocker, A. D. and A. P. Schaum. 1997. Application of stochastic mixing models to hyperspectral detection problems. Algorithms for Multispectral and Hyperspectral Imagery III, A. E. Iverson and S. S. Shen, Eds., SPIE International Society for Optical Engineering, Proc. Vol. 3071, 47–60.

    • Search Google Scholar
    • Export Citation
  • Stocker, A. D., I. S. Reed, and X. Yu. 1990. Multi-dimensional signal processing for electro-optical target detection. Signal and Data Processing of Small Targets, O. Drummond, Ed., SPIE, 218–231.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I. 1931. Effect of variation in density on the stability of superposed streams of fluid. Proc. Roy. Soc. London A201:499523.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. S., M. R. Sinclair, and W. R. Gray. 1997. Estimating long-term annual precipitation in a mountainous region from a diagnostic model. Int. J. Climatol 17:9971007.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., S. W. Running, and M. A. White. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol 190:214250.

    • Search Google Scholar
    • Export Citation
  • Tu, T. M., C. H. Chen, and C. I. Chang. 1997. A posteriori least squares orthogonal subspace projection approach to desired signature extraction and detection. IEEE Trans. Geosci. Remote Sens 35:127139.

    • Search Google Scholar
    • Export Citation
  • Villeneuve, P. V., H. A. Fry, J. P. Theiler, B. W. Smith, and A. D. Stocker. 1999. Improved matched-filter detection techniques. Imaging Spectrometry V, M. R. Descour and S. S. Shen, Eds., International Society for Optical Engineering, Proc. SPIE Vol. 3753, 278–285.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J. and S. M. Robeson. 1995. Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol 15:221229.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J. Coauthors 1985. Statistics for the evaluation and comparison of models. J. Geophys. Res 90:89959005.

  • Wyszogrodski, A. A. 2000. The influence of internal gravity waves on convection and clouds in the lower atmosphere. Preprints, 13th Int. Conf. on Clouds and Precipitation, Reno, NV, Amer. Meteor. Soc., 518–521.

    • Search Google Scholar
    • Export Citation
  • Xie, P. and P. A. Arkin. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc 78:25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, P. and P. A. Arkin. 1998. Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate 11:137164.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong. 2000. The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys 75:161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M. Coauthors 2001. The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys 76:134165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1639 913 31
PDF Downloads 395 57 5