Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land–Atmosphere Schemes for Environmental Modeling

D. T. Mihailovic Faculty of Agriculture, and University Center for Meteorology and Environmental Modeling, University of Novi Sad, Novi Sad, Serbia

Search for other papers by D. T. Mihailovic in
Current site
Google Scholar
PubMed
Close
,
K. Alapaty Carolina Environmental Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Search for other papers by K. Alapaty in
Current site
Google Scholar
PubMed
Close
,
B. Lalic Faculty of Agriculture, and University Center for Meteorology and Environmental Modeling, University of Novi Sad, Novi Sad, Serbia

Search for other papers by B. Lalic in
Current site
Google Scholar
PubMed
Close
,
I. Arsenic Faculty of Agriculture, and University Center for Meteorology and Environmental Modeling, University of Novi Sad, Novi Sad, Serbia

Search for other papers by I. Arsenic in
Current site
Google Scholar
PubMed
Close
,
B. Rajkovic College of Physics, Belgrade University, Belgrade, Serbia

Search for other papers by B. Rajkovic in
Current site
Google Scholar
PubMed
Close
, and
S. Malinovic University Center for Meteorology and Environmental Modeling, University of Novi Sad, Novi Sad, Serbia

Search for other papers by S. Malinovic in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land–Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8–17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.

Current affiliation: Norwegian Meteorological Institute, Oslo, Norway

Corresponding author address: Dragutin T. Mihailovic, Norwegian Meteorological Institute, Postboks 43, Blindern, 0313 Oslo, Norway. dragutin.t.mihailovic@met.no

Abstract

A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land–Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8–17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.

Current affiliation: Norwegian Meteorological Institute, Oslo, Norway

Corresponding author address: Dragutin T. Mihailovic, Norwegian Meteorological Institute, Postboks 43, Blindern, 0313 Oslo, Norway. dragutin.t.mihailovic@met.no

Save
  • Alapaty, K., J. E. Pleim, S. Raman, D. S. Niyogi, and D. W. Byun. 1997a. Simulation of atmospheric boundary layer processes using local- and nonlocal-closure schemes. J. Appl. Meteor 36:214233.

    • Search Google Scholar
    • Export Citation
  • Alapaty, K., S. Raman, and D. S. Niyogi. 1997b. Uncertainty in the specification of surface characteristics: A study of prediction errors in the boundary layer. Bound.-Layer Meteor 82:473475.

    • Search Google Scholar
    • Export Citation
  • Ayers Jr., F. 1952. Theory and Problems of Differential Equations. Shaum, 296 pp.

  • Blackadar, A. K. 1976. Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence Diffusion and Air Quality, Raleigh, NC, Amer. Meteor. Soc., 46–49.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K. 1978. Modeling pollutant transfer during daytime convection. Preprints, Fourth Symp. on Atmospheric Turbulence Diffusion and Air Quality, Reno, NV, Amer. Meteor. Soc., 443–447.

    • Search Google Scholar
    • Export Citation
  • Brandmeyer, J. and H. A. Karimi. 2001. Coupling methodologies for environmental models. Environ. Modell. Software 15:479488.

  • Brunet, Y., J. J. Finnigan, and M. R. Raupach. 1994. A wind tunnel study of air flow in waving wheat: Single-point velocity statistics. Bound.-Layer Meteor 70:95132.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W. and M. Sugita. 1996. Sensible heat transfer parameterization for surfaces with anisothermal dense vegetation. J. Atmos. Sci 53:209216.

    • Search Google Scholar
    • Export Citation
  • Denmead, O. T. 1976. Temperate cereals. Vegetation and the Atmosphere, 2d ed., J. L. Monteith, Ed., Academic Press, 1–31.

  • Dickinson, R. E., A. Henderson-Sellers, P. Kennedy, and M. Wilson. 1986. Biosphere Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/ TN275+STR, 69 pp.

    • Search Google Scholar
    • Export Citation
  • Dubov, A. S., L. P. Bikova, and S. V. Marunich. 1978. Turbulence Inside a Canopy (in Russian). Gidrometeoizdat, 184 pp.

  • Estoque, M. A. 1968. Vertical mixing due to penetrative convection. J. Atmos. Sci 25:10461051.

  • Gedney, N., P. M. Cox, H. Douville, J. Polcher, and P. J. Valdes. 2000. Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate 13:30663079.

    • Search Google Scholar
    • Export Citation
  • Goudriaan, I. 1977. Crop Micrometeorology: A Simulation Study. Wageningen Center for Agricultural Publishing and Documentation, 211 pp.

  • Henderson-Sellers, A. 1996. Soil moisture simulation: Achievements of the RICE and PILPS intercomparison workshop and future directions. Global Planet. Change 13:99115.

    • Search Google Scholar
    • Export Citation
  • Janjié, Z. I. 1994. The step mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev 122:927945.

    • Search Google Scholar
    • Export Citation
  • Janjié, Z. I. 1996. The surface layer in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354–355.

    • Search Google Scholar
    • Export Citation
  • Janjié, Z. I. 2002. Nonsingular implementation of the Mellor–Yamada 2.5 scheme in the NCEP Meso Model. NCEP Office Note No. 437, 61 pp.

    • Search Google Scholar
    • Export Citation
  • Janjié, Z. I., J. P. Gerrity Jr., and S. Nickovic. 2001. An alternative approach to nonhydrostatic modeling. Mon. Wea. Rev 129:11641178.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G. and W-H. Chang. 1999. Principal length scales in second-order closure models for canopy turbulence. J. Appl. Meteor 38:16311643.

    • Search Google Scholar
    • Export Citation
  • Lalic, B., D. T. Mihailovic, B. Rajkovic, I. D. Arsenic, and D. Radlovic. 2003. Wind profile within the forest canopy and in the transition layer above it. Environ. Modell. Software 18:947950.

    • Search Google Scholar
    • Export Citation
  • Laval, K. 1988. Land surface processes. Physically Based Modelling and Simulation of Climate and Climatic Change—Part 1, M. E. Schlesinger, Ed., Kluwer Academic, 285–306.

    • Search Google Scholar
    • Export Citation
  • Legg, B. J. and I. F. Long. 1975. Turbulent diffusion within a wheat canopy II. Quart. J. Roy. Meteor. Soc 101:611628.

  • Massman, W. J. and J. C. Weil. 1999. An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Bound.-Layer Meteor 91:81107.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T. 1996. Description of a land–air parameterization scheme (LAPS). Global Planet. Change 13:207215.

  • Mihailovic, D. T. 2003. Implementation of Land–Air Parameterization Scheme (LAPS) in a limited area model. The New York State Energy Conservation and Development Authority Final Rep. 4914-ERTER-ER-99, 110 pp.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T. and B. Rajkovic. 1993. Surface vegetation parameterization in atmospheric models: A numerical study. Meteor. Z 2:239243.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T. and G. Kallos. 1997. A sensitivity study of a coupled soil– vegetation boundary layer scheme for use in atmospheric modeling. Bound.-Layer Meteor 82:283315.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T., R. A. Pielke, B. Rajkovic, T. J. Lee, and M. Jeftic. 1993. A resistance representation of schemes for evaporation from bare and partly plant-covered surfaces for use in atmospheric models. J. Appl. Meteor 32:10381054.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T., B. Rajkovic, B. Lalic, and L. J. Dekic. 1995. Schemes for parameterizing evaporation from a non-plant-covered surface and their impact on partitioning the surface energy in land–air exchange parameterization. J. Appl. Meteor 34:24622475.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T., T. J. Lee, R. A. Pielke, B. Lalic, I. Arsenic, B. Rajkovic, and P. L. Vidale. 2000. Comparison of different boundary layer schemes using single point micrometeorological field data. Theor. Appl. Climatol 67:135151.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T., I. Koci, B. Lalic, I. Arsenic, D. Radlovic, and J. Balaz. 2001. The main features of BAHUS-biometeorological system for messages on the occurrence of diseases in fruits and vines. Environ. Modell. Software 16:691696.

    • Search Google Scholar
    • Export Citation
  • Mihailovic, D. T., S. T. Rao, C. Hogrefe, and R. Clark. 2002. An approach for the aggregation of aerodynamic parameters in calculating the turbulent fluxes over heterogeneous surfaces in atmospheric models. Environ. Fluid Mech 2:315337.

    • Search Google Scholar
    • Export Citation
  • Munley, W. G. 1991. Estimation of regional evapotranspiration for tall grass prairie measurements of properties of the atmospheric boundary layer. Water Resour. Res 27:225230.

    • Search Google Scholar
    • Export Citation
  • Pielke Sr., R. A. 2002a. Mesoscale Meteorological Modeling. 2d ed. Academic Press, 676 pp.

  • Pielke Sr., R. A. 2002b. Overlooked issues in the U.S. national climate and IPCC assessments. An editorial essay. Climatic Change 52:111.

    • Search Google Scholar
    • Export Citation
  • Pinard, J. D. J-P. and J. D. Wilson. 2001. First- and second-order models for wind in a plant canopy. J. Appl. Meteor 40:17621768.

  • Raupach, M. R., J. J. Finnigan, and Y. Brunet. 1996. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor 78:351382.

    • Search Google Scholar
    • Export Citation
  • Richtmyer, R. D. and K. W. Morton. 1967. Difference Methods for Initial Value Problems. Interscience, 406 pp.

  • Rodhe, H., H. Charlson, and T. L. Anderson. 2000. Avoiding circular logic in climatic modeling. An editorial essay. Climatic Change 44:409411.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J. and J. L. Dorman. 1987. Testing the Simple Biosphere model (SiB) using point micrometeorological and biophysical data. J. Climate Appl. Meteor 26:622651.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. Sud, and A. Dalcher. 1986. A Simple Biosphere model (SiB) for use within general circulation model. J. Atmos. Sci 43:506531.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., W. J. Shuttleworth, J. L. Dorman, A. Dalcher, and J. M. Roberts. 1989. Calibrating the Simple Biosphere model for Amazonian tropical forest using field and remote sensing data: Part 1. Average calibration with field data. J. Appl. Meteor 28:727759.

    • Search Google Scholar
    • Export Citation
  • Staub, B. and C. Rosenzweig. 1987. Global digital datasets of soil type, soil texture, surface slope, and other properties: Documentation of archived tape data. NASA Tech. Memo. 100685, 19 pp.

    • Search Google Scholar
    • Export Citation
  • Uchijima, Z. 1976. Radiation characteristics of maize and rice fields. Vegetation and the Atmosphere, 2d ed., J. L. Monteith, Ed., Academic Press, 32–45.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M. 1996. Sparse canopy parameterizations for meteorological models. Ph.D. dissertation, Wageningen Agricultural University, 271 pp.

    • Search Google Scholar
    • Export Citation
  • van Pul, W. A. J. 1992. The flux of ozone to a maize crop and underlying soil during a growing season. Ph.D. dissertation, Wageningen Agricultural University, 147 pp.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L. Coauthors 2000. Coupled atmosphere–biophysics– hydrology models for environmental modeling. J. Appl. Meteor 39:931944.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. D., D. P. Ward, G. W. Thurtell, and G. E. Kidd. 1982. Statistics of atmospheric turbulence within and above a corn canopy. Bound.-Layer Meteor 24:495519.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C. 1988. Convective processes in the lower atmosphere. Flow and Transport in the Natural Environment: Advances and Applications, W. L. Steffen and O. T. Denmead, Eds., Springer, 240–260.

    • Search Google Scholar
    • Export Citation
  • Xue, Y. K., P. J. Sellers, J. K. Kinter, and J. Shukla. 1991. A simplified biosphere model for global climate studies. J. Climate 4:345364.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. and R. A. Anthes. 1982. A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor 21:15941609.

    • Search Google Scholar
    • Export Citation
  • Zoumakis, N. M. 1993. Estimating the zero-plane displacement and roughness length for tall vegetation and forest canopies using semi-empirical wind profiles. J. Appl. Meteor 32:574579.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 0 0
Full Text Views 1431 809 31
PDF Downloads 444 64 1