Multidataset Study of Optimal Parameter and Uncertainty Estimation of a Land Surface Model with Bayesian Stochastic Inversion and Multicriteria Method

Youlong Xia Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Youlong Xia in
Current site
Google Scholar
PubMed
Close
,
Mrinal K. Sen Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Mrinal K. Sen in
Current site
Google Scholar
PubMed
Close
,
Charles S. Jackson Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Charles S. Jackson in
Current site
Google Scholar
PubMed
Close
, and
Paul L. Stoffa Institute for Geophysics, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Paul L. Stoffa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.

Corresponding author address: Youlong Xia, NOAA/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08542. youlong.xia@noaa.gov

Abstract

This study evaluates the ability of Bayesian stochastic inversion (BSI) and multicriteria (MC) methods to search for the optimal parameter sets of the Chameleon Surface Model (CHASM) using prescribed forcing to simulate observed sensible and latent heat fluxes from seven measurement sites representative of six biomes including temperate coniferous forests, tropical forests, temperate and tropical grasslands, temperate crops, and semiarid grasslands. Calibration results with the BSI and MC show that estimated optimal values are very similar for the important parameters that are specific to the CHASM model. The model simulations based on estimated optimal parameter sets perform much better than the default parameter sets. Cross-validations for two tropical forest sites show that the calibrated parameters for one site can be transferred to another site within the same biome. The uncertainties of optimal parameters are obtained through BSI, which estimates a multidimensional posterior probability density function (PPD). Marginal PPD analyses show that nonoptimal choices of stomatal resistance would contribute most to model simulation errors at all sites, followed by ground and vegetation roughness length at six of seven sites. The impact of initial root-zone soil moisture and nonmosaic approach on estimation of optimal parameters and their uncertainties is discussed.

Corresponding author address: Youlong Xia, NOAA/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08542. youlong.xia@noaa.gov

Save
  • Alapaty, K., S. Raman, and D. S. Niyogi. 1997. Uncertainty in specification of surface characteristics: A study of prediction errors in the boundary layer. Bound.-Layer Meteor 82:473–500.

    • Search Google Scholar
    • Export Citation
  • Bastidas, L. A., H. V. Gupta, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang. 1996. The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res 101:7209–7225.

    • Search Google Scholar
    • Export Citation
  • Bastidas, L. A., H. V. Gupta, S. Sorooshian, W. J. Shuttleworth, and Z. L. Yang. 1999. Sensitivity analysis of a land surface scheme using multi-criteria methods. J. Geophys. Res 104:19481–19490.

    • Search Google Scholar
    • Export Citation
  • Bates, B. C. and E. P. Campbell. 2001. A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour. Res 37:937–947.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M. and F. Bosveld. 1997. Cabauw data for the validation of land surface parameterization schemes. J. Climate 10:1172–1193.

    • Search Google Scholar
    • Export Citation
  • Beringer, J., S. McIlwaine, A. H. Lynch, F. S. Chapin III, and G. B. Bonan. 2002. The use of a reduced form model to assess the sensitivity of a land surface model to biotic surface parameters. Climate Dyn 19:455–466.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., D. Pollard, and S. L. Thompson. 1993. Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land–atmosphere interactions. J. Climate 6:1882–1897.

    • Search Google Scholar
    • Export Citation
  • Bowling, L. C. Coauthors 2003. Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS Phase 2(e) 1. Experiment description and summary intercomparisons. Global Planet. Change 38:1–35.

    • Search Google Scholar
    • Export Citation
  • Campbell, E. P., D. R. Fox, and B. C. Bates. 1999. A Bayesian approach to parameter estimation and pooling in nonlinear flood event models. Water Resour. Res 35:211–220.

    • Search Google Scholar
    • Export Citation
  • Chen, T. H. Coauthors 1997. Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes. J. Climate 10:1194–1215.

    • Search Google Scholar
    • Export Citation
  • Collins, D. C. and R. Avissar. 1994. An evaluation with the Fourier amplitude sensitivity test (FAST) of which land-surface parameters are of greatest importance in atmospheric modeling. J. Climate 7:681–703.

    • Search Google Scholar
    • Export Citation
  • Crossley, J. F., J. Polcher, P. M. Cox, N. Gedney, and S. Planton. 2000. Uncertainties linked to land-surface processes in climate change simulations. Climate Dyn 16:949–961.

    • Search Google Scholar
    • Export Citation
  • Desborough, C. E. 1999. Surface energy balance complexity in GCM land surface models. Climate Dyn 15:389–403.

  • Desborough, C. E., A. J. Pitman, and B. McAvaney. 2001. Surface energy balance complexity in GCM land surface models. Part II: Coupled simulations. Climate Dyn 17:615–626.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., V. K. Gupta, and S. Sorooshian. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res 28:1015–1031.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., S. Sorooshian, and V. K. Gupta. 1994. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol 158:265–284.

    • Search Google Scholar
    • Export Citation
  • Franks, S. W. and K. J. Beven. 1997. Bayesian estimation of uncertainty in land surface–atmosphere flux predictions. J. Geophys. Res 102:23991–23999.

    • Search Google Scholar
    • Export Citation
  • Gao, X., S. Sorooshian, and H. V. Gupta. 1996. Sensitivity analysis of the Biosphere–Atmosphere Transfer Scheme. J. Geophys. Res 101:7279–7289.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2003. Bayesian Data Analysis. 2d ed. Chapman and Hall, 696 pp.

  • Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1998. Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information. Water Resour. Res 34:751–761.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., L. A. Bastidas, S. Sorooshian, W. J. Shuttleworth, and Z-L. Yang. 1999. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res 104:19491–19503.

    • Search Google Scholar
    • Export Citation
  • Hastings, W. K. 1970. Monte Carlo sampling method using Markov chains and their applications. Biometrika 57:97–109.

  • Henderson-Sellers, A. 1993. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. J. Climate 6:227–247.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A. 1996. Soil moisture simulation: Achievements of the RICE and PILPS intercomparison workshop and future directions. Global Planet. Change 13:99–115.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., K. McGuffie, and A. Pitman. 1996. The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS): 1992–1995. Climate Dyn 12:849–859.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., L. G. Meria Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell. Eds.,. 1996. Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 572 pp.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., Y. Xia, M. K. Sen, and P. Stoffa. 2003. Optimal parameter estimation and uncertainty analysis of a land surface model: A case study from Cabauw, Netherlands. J. Geophys. Res.,108, 4583, doi:10.1029/2002JD002991.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., M. Sen, and P. Stoffa. 2004. An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions. J. Climate 17:2828–2841.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G. 1976. The interpretation of the variations in the leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London 273B:593–610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D. and M. J. Suarez. 1992. Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res 97:2697–2715.

    • Search Google Scholar
    • Export Citation
  • Kuczera, G. and E. Parent. 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. J. Hydrol 211:69–85.

    • Search Google Scholar
    • Export Citation
  • Leplastrier, M., A. J. Pitman, H. V. Gupta, and Y. Xia. 2002. Exploring the relationship between complexity and performance in a land surface model using the multicriteria method. J. Geophys. Res.,107, 4443, doi:10.1029/2001JD000931.

    • Search Google Scholar
    • Export Citation
  • Manabe, S. 1969. Climate and the ocean circulation. I: The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev 97:739–805.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A. and D. Entekhabi. 2001. Feedback between the landsurface energy balance and atmospheric boundary layer diagnosed through a model and its adjoint. J. Hydrometeor 2:599–619.

    • Search Google Scholar
    • Export Citation
  • McWilliam, A. L. C., O. M. R. Cabral, B. M. Gomes, J. L. Esteves, and J. M. Roberts. 1996. Forest and pature leaf–gas exchange in south-west Amazonia. Amazon Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley, 265–286.

    • Search Google Scholar
    • Export Citation
  • Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys 21:1087–1092.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D. S., S. Raman, and K. Alapaty. 1998. Comparison of four different stomatal resistance schemes using FIFE data. Part II: Analysis of terrestrial biospheric–atmospheric interactions. J. Appl. Meteor 37:1301–1320.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D. S., S. Raman, and K. Alapaty. 1999. Uncertainty in specification of surface characteristics, Part 2: Hierarchy of interaction explicit statistical analysis. Bound.-Layer Meteor 91:341–366.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D. S., Y. K. Xue, and S. Raman. 2002. Hydrological land surface response in a tropical regime and a midlatitudinal regime. J. Hydrometeor 3:39–56.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J. 1994. Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model. J. Climate 7:1856–1869.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., Y. Xia, M. Leplastrier, and A. Henderson-Sellers. 2003. The CHAmeleon Surface Model (CHASM): Description and use with the PILPS Phase 2e forcing data. Global Planet. Change 38:121–135.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. M., O. M. R. Cabral, and L. F. de Aguiar. 1990. Stomatal and boundary layer conductances measured in a terra firme rain forest. J. Appl. Ecol 27:336–353.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. M., O. M. R. Cabral, J. P. da Costa, A. C. L. McWilliam, and T. D. A. Sa. 1996. An overview of the leaf area index and physiological measurements during ABRACOS. Amazon Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley and Sons, 287– 306.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A. Coauthors 2000. Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev 128:301–321.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J. Coauthors 1997. Modeling the exchanges of energy, water and carbon between continents and the atmosphere. Science 275:502–509.

    • Search Google Scholar
    • Export Citation
  • Sen, M. K. and P. L. Stoffa. 1995. Global Optimization Methods in Geophysical Inversion. Elsevier, 281 pp.

  • Sen, M. K. and P. L. Stoffa. 1996. Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion. Geophys. Prospect 44:313–350.

    • Search Google Scholar
    • Export Citation
  • Sen, O. L., L. A. Bastidas, W. J. Shuttleworth, Z-L. Yang, H. V. Gupta, and S. Sorooshian. 2001. Impact of field-calibrated vegetation parameters on GCM climate simulations. Quart. J. Roy. Meteor. Soc 127:1199–1223.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J. 1984. Observations of radiation exchange above and below Amazonian forest. Quart. J. Roy. Meteor. Soc 110:1163–1169.

    • Search Google Scholar
    • Export Citation
  • Skaggs, T. H. and D. A. Barry. 1996. Sensitivity methods for time-continuous, spatially discrete groundwater contaminant transport models. Water Resour. Res 32:2409–2420.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G. Coauthors 2001. The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor 2:7–25.

    • Search Google Scholar
    • Export Citation
  • Thiemann, M., M. Trosser, H. Gupta, and S. Sorooshian. 2001. Bayesian recursive parameter estimation for hydrologic models. Water Resour. Res 37:2521–2535.

    • Search Google Scholar
    • Export Citation
  • Unland, H. E., P. R. Houser, W. J. Shuttleworth, and Z. L. Yang. 1996. Surface flux measurement and modeling at a semi-arid Sonoran Desert site. Agric. For. Meteor 82:119–153.

    • Search Google Scholar
    • Export Citation
  • Wang, Q. J. 1991. The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour. Res 27:2467–2471.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. F., A. Henderson-Sellers, R. E. Dickinson, and P. J. Kennedy. 1987. Sensitivity of the Biosphere–Atmosphere Transfer Scheme (BATS) to the inclusion of variable soil characteristics. J. Climate Appl. Meteor 26:341–362.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F. and Coauthors,. 1998. The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment. I. Experiment description and summary intercomparisons. Global Planet. Change 19:115–135.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., A. J. Pitman, H. V. Gupta, M. Leplastrier, A. Henderson-Sellers, and L. A. Bastidas. 2002. Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset. J. Hydrometeor 3:181–194.

    • Search Google Scholar
    • Export Citation
  • Yapo, P. O., H. V. Gupta, and S. Sorooshian. 1998. Multi-objective global optimization for hydrologic models. J. Hydrol 204:83–97.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Henderson-Sellers, A. J. Pitman, J. L. McGregor, C. E. Desborough, and J. J. Katzfey. 2001. Limited-area model sensitivity to the complexity of representation of the land surface energy balance. J. Climate 14:3965–3986.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 731 603 48
PDF Downloads 50 21 1