• Arkin, P. A. 1979. The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev 107:13821387.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L. 1980. Report on a meeting to establish a common Doppler radar exchange format. Bull. Amer. Meteor. Soc 61:14011404.

  • Battan, L. J. 1973. Radar Observations of the Atmosphere. University of Chicago Press, 324 pp.

  • Baumgardner, D., W. J. Strapp, and J. E. Dye. 1985. Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses. J. Atmos. Oceanic Technol 2:626632.

    • Search Google Scholar
    • Export Citation
  • Biter, C. J., J. E. Dye, D. Huffman, and W. D. King. 1987. The drop-size response of the CSIRO liquid water probe. J. Atmos. Oceanic Technol 4:359367.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A. and P. N. Francis. 1995. Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol 12:410414.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., G. A. Isaac, and A. Korolev. 2001. Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol 18:515528.

    • Search Google Scholar
    • Export Citation
  • Duroure, C., H. R. Larsen, H. Isaka, and P. Personne. 1994. 2D image population analysis. Atmos. Res 34:195205.

  • Dye, J. E. and D. Baumgardner. 1984. Evaluation of the forward scattering spectrometer probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol 1:329344.

    • Search Google Scholar
    • Export Citation
  • Gardiner, B. A. and J. Hallett. 1985. Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles. J. Atmos. Oceanic Technol 2:171180.

    • Search Google Scholar
    • Export Citation
  • Gayet, J. F., G. Febvre, and H. Larsen. 1996. The reliability of the PMS FSSP in the presence of small ice crystals. J. Atmos. Oceanic Technol 13:13001310.

    • Search Google Scholar
    • Export Citation
  • Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar. 1978. Rain estimation from geosynchronous satellite imagery: Visible and infrared studies. Mon. Wea. Rev 106:11511171.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. 1982. A comparative study of the rates of development of potential graupel and hail embryos in High Plains storms. J. Atmos. Sci 39:28672897.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. and J. L. Parrish. 1978. A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor 17:15661572.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. and J. L. Parrish. 1979. Techniques employed in the processing of particle size spectra and state parameter data obtained with the T-28 aircraft platform. NCAR Tech. Note NCAR/TN-137+ 1A, 77 pp.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. and M. R. Hjelmfelt. 1984. Processes of hydrometeor development in Oklahoma convective clouds. J. Atmos. Sci 41:28112835.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. and D. Baumgardner. 1985. Summary of a workshop on processing 2-D probe data. Bull. Amer. Meteor. Soc 66:437440.

  • Heymsfield, A. J. and M. Kajikawa. 1987. An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci 44:10881099.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. and G. M. McFarquhar. 1996. High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands. J. Atmos. Sci 53:24242451.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger. 2002a. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci 59:34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot. 2002b. A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci 59:329.

    • Search Google Scholar
    • Export Citation
  • Holroyd III, E. W. 1987. Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol 4:498511.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc 78:21792196.

    • Search Google Scholar
    • Export Citation
  • Hunter, H. E., R. M. Dyer, and M. Glass. 1984. A two-dimensional hydrometeor machine classifier derived from observed data. J. Atmos. Oceanic Technol 1:2836.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto. 2000. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor 39:20382052.

    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth. 1978. A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor 17:18091813.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G. 1970. The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor 9:86103.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. and J. W. Strapp. 2002. Accuracy of measurements of cloud ice water content by the Nevzorov probe. Preprints, 40th Aerospace Sciences Meeting, Reno, NV, AIAA-2002-0679. [Available online at http://pdf.aiaa.org/preview/CDreadyMASM02_565/PV2002_679.pdf.].

    • Search Google Scholar
    • Export Citation
  • Korolev, A., J. W. Strapp, and G. A. Isaac. 1998a. Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol 15:708720.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov. 1998b. The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol 15:14951510.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. A. Isaac, and J. Hallett. 2000. Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc 126:28732902.

  • Kummerow, C. 1998. Beamfilling errors in passive microwave rainfall retrievals. J. Appl. Meteor 37:356370.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson. 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol 15:809817.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. Coauthors, 2000. The status of the Tropical Rainfall Measuring Mission after two years in orbit. J. Appl. Meteor 39:19651982.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P. and R. H. Cormack. 1995. Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research. Atmos. Res 35:315348.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen. 2001. An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res 106:1498915014.

    • Search Google Scholar
    • Export Citation
  • Lee, W-C., C. A. Walther, and R. Oye. 1994. Proposed Doppler radar data exchange format: DORADE. NCAR Tech. Note NCAR/TN 403+IA, 36 pp.

  • Locatelli, J. D. and P. V. Hobbs. 1974. Fall speeds and masses of solid precipitation particles. J. Geophys. Res 79:21852197.

  • Magono, C. and C. V. Lee. 1966. Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7 2:321362.

  • Mitchell, D. L., R. Zhang, and R. L. Pitter. 1990. Mass–dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor 29:153164.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank. 1986. The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol 3:143161.

    • Search Google Scholar
    • Export Citation
  • Oye, R. and R. Carbone. 1981. Interactive Doppler editing software. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 683–689.

    • Search Google Scholar
    • Export Citation
  • Oye, R., C. Mueller, and S. Smith. 1995. Software for radar translation, visualization, editing and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. J. and R. A. Houze Jr.. 2003. Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate 16:17391756.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. R. North. 1988. A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc 69:278295.

    • Search Google Scholar
    • Export Citation
  • Smith, E. A., H. J. Cooper, X. Xiang, A. Mugnai, and G. J. Tripoli. 1992. Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor 31:506531.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W. 1986. A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates. J. Climate Appl. Meteor 25:754766.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic. 2001. Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol 18:11501170.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., A. J. Schanot, and W. A. Cooper. 1997. Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol 14:197202.

    • Search Google Scholar
    • Export Citation
  • Weinman, J. A. and P. J. Guetter. 1977. Determination of rainfall distributions from microwave radiation measured by the Nimbus 6 ESMR. J. Appl. Meteor 16:437442.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T. Coauthors, 1982. Microwave radiometric observations near 19.35, 92 and 183 GHz of precipitation in Tropical Storm Cora. J. Appl. Meteor 21:11371145.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., R. A. Houze Jr., E. A. Smith, T. T. Wilheit, and E. Zipser. 2005. Physical characterization of tropical oceanic convection observed in KWAJEX. J. Appl. Meteor., in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 46 4
PDF Downloads 36 19 7

TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms

View More View Less
  • a Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada
  • | b Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | c National Center for Atmospheric Research,& Boulder, Colorado
  • | d Sky Tech Research, Inc., Toronto, Ontario, Canada
Restricted access

Abstract

A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the Tropical Rainfall Measuring Mission (TRMM) program is described. These “common microphysics products” (CMPs) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived by using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMPs are organized into an American Standard Code for Information Interchange (ASCII) structure to allow easy access to the data for those less familiar with microphysical data processing and without the tools to accomplish it. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, nonproprietary software package for microphysics data processing—initiatives that would likely broaden community access to, and use of, microphysics datasets.

Corresponding author address: David E. Kingsmill, Cooperative Institute for Research in Environmental Sciences, University of Colorado, 216 UCB, Boulder, CO 80309-0216. david.kingsmill@colorado.edu

Abstract

A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the Tropical Rainfall Measuring Mission (TRMM) program is described. These “common microphysics products” (CMPs) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived by using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMPs are organized into an American Standard Code for Information Interchange (ASCII) structure to allow easy access to the data for those less familiar with microphysical data processing and without the tools to accomplish it. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, nonproprietary software package for microphysics data processing—initiatives that would likely broaden community access to, and use of, microphysics datasets.

Corresponding author address: David E. Kingsmill, Cooperative Institute for Research in Environmental Sciences, University of Colorado, 216 UCB, Boulder, CO 80309-0216. david.kingsmill@colorado.edu

Save