• Bader, M. J., S. A. Clough, and G. P. Cox. 1987. Aircraft and dual polarization radar observations of hydrometeors in light stratiform precipitation. Quart. J. Roy. Meteor. Soc 113:491515.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J. 1973. Radar Observation of the Atmosphere. University of Chicago Press, 279 pp.

  • Brandes, E. A., G. Zhang, and J. Vivekanandan. 2002. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor 41:647685.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J. and D. S. Zrnić. 1993. Doppler Radar and Weather Observations. Academic Press. 562 pp.

  • Doviak, R. J., V. Bringi, A. Ryzhkov, A. Zahrai, and D. Zrnić. 2000. Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol 17:257278.

    • Search Google Scholar
    • Export Citation
  • Fabry, F. and I. Zawadzki. 1995. Long-term observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci 52:838851.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. Ed.,. 2000. Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Gourley, J. J. and C. M. Calvert. 2003. Automated detection of the bright band using WSR-88D data. Wea. Forecasting 18:585598.

  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry. 1984. Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci 19:132140.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H. and A. R. Jameson. 1992. Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc 73:13651374.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V. 1973. Ice in the atmosphere: A review of the present position. Physics and Chemistry of Ice, E. Whalley, S. J. Jones, and L. W. Gold, Eds., Royal Society of Canada, 308–319.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M. P. and A. J. Illingworth. 2003. Comparison of model-derived and radar-observed freezing-level heights: Implications for vertical reflectivity profile-correction schemes. Quart. J. Roy. Meteor. Soc 129:8395.

    • Search Google Scholar
    • Export Citation
  • Randall, M., J. Lutz, and J. Fox. 1997. S-Pol's high isolation mechanical polarization switch. Preprints. 28th Conf. On Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 252–253.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. and D. Zrnić. 1998. Beamwidth effects on the differential phase measurements of rain. J. Atmos. Oceanic Technol 15:624634.

    • Search Google Scholar
    • Export Citation
  • Sánchez-Diezma, R., I. Zawadzki, and D. Sempere-Torres. 2000. Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res 105:22252236.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. D. Marwitz, J. C. Page, and R. E. Carbone. 1984. Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci 41:32273237.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T. Coauthors, 2003. Improvement of Microphysical Parameterization through Observational Verification Experiment. Bull. Amer. Meteor. Soc 84:18071826.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., R. Raghavan, and V. N. Bringi. 1993. Polarimetric radar modeling of mixtures of precipitation particles. IEEE Trans. Geosci. Remote Sens 31:10171030.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., D. S. Zrnić, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka. 1999. Cloud microphysics retrieval using S-band dual-polarization measurements. Bull. Amer. Meteor. Soc 80:381388.

    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman. 2002. An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol 19:687697.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T. and A. J. Heymsfield. 1989. Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci 46:20082025.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka. 1993. Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor 32:678693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 181 11
PDF Downloads 242 117 10

Freezing-Level Estimation with Polarimetric Radar

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

A simple empirical procedure for determining freezing levels with polarimetric radar measurements is described. The algorithm takes advantage of the strong melting-layer signatures and the redundancy provided by the suite of polarimetric radar measurements—in particular, radar reflectivity, linear depolarization ratio, and cross-correlation coefficient. Freezing-level designations can be made with all volumetric scanning strategies. Application to uniform (stratiform) precipitation within 60 km of the radar and with brightband reflectivity maxima of greater than 25 dBZ suggests an accuracy of 100–200 m.

Corresponding author address: Dr. Edward A. Brandes, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. brandes@ncar.ucar.edu

Abstract

A simple empirical procedure for determining freezing levels with polarimetric radar measurements is described. The algorithm takes advantage of the strong melting-layer signatures and the redundancy provided by the suite of polarimetric radar measurements—in particular, radar reflectivity, linear depolarization ratio, and cross-correlation coefficient. Freezing-level designations can be made with all volumetric scanning strategies. Application to uniform (stratiform) precipitation within 60 km of the radar and with brightband reflectivity maxima of greater than 25 dBZ suggests an accuracy of 100–200 m.

Corresponding author address: Dr. Edward A. Brandes, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. brandes@ncar.ucar.edu

Save