• Atlas, D. 1966. The balance level in convective storms. J. Atmos. Sci 23:635651.

  • Battan, L. J. 1973. Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Biggerstaff, M. I. and S. A. Listemaa. 2000. An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteor 39:21292150.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D. and R. A. Houze Jr.. 1984. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci 41:933960.

    • Search Google Scholar
    • Export Citation
  • Donaldson, R. J. 1961. Radar reflectivity profiles in thunderstorms. J. Atmos. Sci 18:292305.

  • Doviak, R. J. and D. S. Zrnic. 1992. Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Emanuel, K. A. 1986. An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci 43:585604.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B. and P. S. Du Toit. 1969. Terminal velocity of raindrops aloft. J. Appl. Meteor 8:249253.

  • Gage, K. S., C. R. Williams, W. L. Clark, P. E. Johnston, and D. A. Carter. 2002. Profiler contributions to Tropical Rainfall Measuring Mission (TRMM) ground validation field campaigns. J. Atmos. Oceanic Technol 19:843863.

    • Search Google Scholar
    • Export Citation
  • Geerts, B. and Y. Dawei. 2004. Classification and characterization of tropical precipitation based on high-resolution airborne vertical incidence radar. Part II: Composite vertical structure of hurricanes versus storms over Florida and the Amazon. J. Appl. Meteor 43:15671585.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., G. M. Heymsfield, L. Tian, J. B. Halverson, A. Guillory, and M. I. Mejia. 2000. Hurricane Georges' landfall in the Dominican Republic: Detailed airborne Doppler radar imagery. Bull. Amer. Meteor. Soc 81:9991018.

    • Search Google Scholar
    • Export Citation
  • Goldhirsh, J. and B. Musiani. 1986. Rain cell size characteristics derived from radar observations at Wallops Island, Virginia. IEEE Trans.Geosci. Remote Sens GE-24:947954.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M. 1989. Accuracy of vertical air motions from nadir-viewing Doppler airborne radars. J. Atmos. Oceanic Technol 6:10791082.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M. and L. Tian. 2000. Fallspeeds and vertical air motions in stratiform rain derived from ER-2 Doppler radar observations. Preprints, 13th Int. Conf. on Clouds and Precipitation, Reno, NV, International Union of Geodesy and Geophysics, 303–305.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M. Coauthors, 1996. The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol 13:795809.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., B. Geerts, and L. Tian. 2000. TRMM precipitation radar reflectivity profiles as compared with high-resolution airborne and ground-based radar measurements. J. Appl. Meteor 39:20802102.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui. 2001. ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor 40:13101330.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., N. T. Funk, R. R. Weiss, J. D. Locatelli, and K. R. Biswas. 1985. Evaluation of a 35 GHz radar for cloud physics research. J. Atmos. Oceanic Technol 2:3548.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A. 1973. A climatological study of vertical transports by cumulus-scale convection. J. Atmos. Sci 30:11121123.

  • Houze Jr., R. A. 1993. Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc 78:21792196.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., F. D. Marks, and R. A. Black. 1992. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci 49:943963.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto. 2000. Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor 39:20382052.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert. 1999. Trimodal characteristics of tropical convection. J. Climate 12:23972418.

    • Search Google Scholar
    • Export Citation
  • Lee, W-C., P. Dodge, F. D. Marks, and P. H. Hildebrand. 1994. Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol 11:572578.

    • Search Google Scholar
    • Export Citation
  • López, R. E. 1976. Radar characteristics of the cloud populations of tropical disturbances in the northwest Atlantic. Mon. Wea. Rev 104:268283.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D. and R. A. Houze Jr.. 1987. Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci 44:12961317.

    • Search Google Scholar
    • Export Citation
  • Marks Jr., F. D., R. A. Houze Jr., and J. F. Gamache. 1992. Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci 49:919942.

    • Search Google Scholar
    • Export Citation
  • NASDA, 1999. TRMM PR algorithm instruction manual V1. 0. Communications Research Laboratory, 52 pp. [Available from Communications Research Laboratory, 4-2-1 Nukui-kitamachi, Koganei-chi, Tokyo 184, Japan.].

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A. and S. A. Rutledge. 2001. Regional variability in tropical convection: Observations from TRMM. J. Climate 14:35663586.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge. 2002. TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate 15:12781294.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., E. Amitai, and D. B. Wolff. 1995. Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor 34:198211.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., F. Mesnard, and R. S. Tenorio. 1999. The relation between the area-average rain rate and the rain cell size distribution parameters. J. Atmos. Sci 56:5770.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. and R. A. Houze Jr.. 2003. Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate 16:17391756.

    • Search Google Scholar
    • Export Citation
  • Steiner, M. and R. A. Houze Jr.. 1997. Sensitivity of the estimated monthly convective rain fraction to the choice of ZR relation. J. Appl. Meteor 36:452462.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter. 1995. Climatological characterization of three-dimensional storm structure from operational radar and raingauge data. J. Appl. Meteor 34:19782007.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone. 1984. Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci 41:32273237.

    • Search Google Scholar
    • Export Citation
  • Testud, J., P. H. Hildebrand, and W-C. Lee. 1995. A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth's surface. J. Atmos. Oceanic Technol 12:800820.

    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, and R. C. Srivastava. 2002. Measurement of attenuation with airborne and ground-based radar in convective storms over land and its microphysical implications. J. Appl. Meteor 41:716733.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. A. Short, C. R. Williams, W. L. Ecklund, and K. L. Gage. 1999. Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor 38:302320.

    • Search Google Scholar
    • Export Citation
  • White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman. 2002. An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol 19:687697.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., W. L. Ecklund, and K. S. Gage. 1995. Classification of precipitating clouds in the Tropics using 915-MHz wind profilers. J. Atmos. Oceanic Technol 12:9961012.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka. 1993. Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor 32:678693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 56 7
PDF Downloads 44 15 2

Classification and Characterization of Tropical Precipitation Based on High-Resolution Airborne Vertical Incidence Radar. Part I: Classification

View More View Less
  • 1 University of Wyoming, Laramie, Wyoming
Restricted access

Abstract

Airborne measurements of vertical incidence radar reflectivity and radial velocity are analyzed for some 21 231 km of high-altitude flight tracks over tropical precipitation systems, in order to describe their characteristic vertical structure. The strength of the radar dataset lies in its superb vertical resolution, sufficient to detect unambiguously a bright band and the coincident Doppler velocity change, which identify the melting layer in stratiform precipitation. In this first of a two-part study, a technique based on the detection of this stratiform precipitation signature is developed to classify hydrometer profiles as convective, stratiform, or shallow. Even though the profiles are classified individually, stratiform and convective regions emerge, whose characteristics are described. The hydrometeor vertical velocity variability is smaller in stratiform profiles, which is consistent with the physical concept of a stratiform region. The purpose of the classification is to describe, in , the composite vertical structure of the various rain types in hurricanes, as well as in isolated to organized precipitating convection sampled in Florida and Brazil.

Corresponding author address: Dr. Bart Geerts, Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. geerts@uwyo.edu

Abstract

Airborne measurements of vertical incidence radar reflectivity and radial velocity are analyzed for some 21 231 km of high-altitude flight tracks over tropical precipitation systems, in order to describe their characteristic vertical structure. The strength of the radar dataset lies in its superb vertical resolution, sufficient to detect unambiguously a bright band and the coincident Doppler velocity change, which identify the melting layer in stratiform precipitation. In this first of a two-part study, a technique based on the detection of this stratiform precipitation signature is developed to classify hydrometer profiles as convective, stratiform, or shallow. Even though the profiles are classified individually, stratiform and convective regions emerge, whose characteristics are described. The hydrometeor vertical velocity variability is smaller in stratiform profiles, which is consistent with the physical concept of a stratiform region. The purpose of the classification is to describe, in , the composite vertical structure of the various rain types in hurricanes, as well as in isolated to organized precipitating convection sampled in Florida and Brazil.

Corresponding author address: Dr. Bart Geerts, Department of Atmospheric Sciences, University of Wyoming, Laramie, WY 82071. geerts@uwyo.edu

Save